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Abstract: The magnetic moments of the massive-quark baryons - strange and charmed h

	

ons
- are calculated in the skyrmion description in which the baryon with a heavy flavor is
described as a heavy pseudoscalar meson OQ composed of a heavy quark Q and a li
antiquark q "wrapped" by - and bound to - an SU(2) soliton. We use the original S `

	

e-
type lagrangian supplemented by a symmetry breaking term involving derivatives of the
chiral field U . Both the spectra and the magnetic moments predicted by this model are quite
similar to those of quark models. Our results provide evidence that the skyrmion description
works equally well for massive-quark baryons as it does for light-quark (chiral-symmetry)
baryons, supporting the suggestion that a hierarchy of induced gauge fields associated with
layers of length scales involved in the strong interactions play an important role.

t

The bound soliton-pseudoscalar doublet model proposed by Callan and Klebanov ' )
has been found to work reasonably well in describing the structure of strangeness-
flavored hyperons such as mass spectrum 2-5 ) and the magnetic moments 6-s ) . The
key feature of the model is that a pseudoscalar doublet meson OQ made of a massive
quark Q and a light antiquark q gets wrapped by - and bound to - an SU(2) soliton
to give rise to the hyperons of one or more Q's. It was suggested recently 9 ) that this
picture should apply equally well to charmed and bottom baryons . This suggestion was
supported by the hyperfine splittings in the heavy-flavor spectra but the centroid of
each massive flavor came out too low because of the too strong binding of the OQ
with the soliton. This difficulty was resolved by Riska and Scoccola 1° ) by adding to
the usual Skyrme model an additional flavor symmetry breaking term that depends
upon derivatives of the chiral field U, a term recently studied in a different context
by Pari et al. 11 ) . The Riska-Scoccola model (called the RS model in short) differs

1 Permanent address: Service de Physique Théorique, C.E. Saclay, 91191 Gif-sur-Yvette, France.
2 Work supported in part by the KOSEF through the Center for Theoretical Physics, and by the
Ministry of Science and Technology, ROK.
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from the usual Skyrme model in that in addition to the symmetry breaking in the OQ
mass (from, say, the pion mass), the effect on the decay constants is also taken into
account through the derivative-dependent symmetry breaking. This model has been
recently u to predict the spectra of both ground state and excited charmed and

atom baryons 1 :1 ) .
The aim of this pa provide a stronger case for the thesis of ref. 9 ) by

calculating the magnetic moments of both strange- and charm-flavored baryons in the
. We confirm the results of ref. '®) in t" ,

	

tra and obtain the hyperon
fife®11 1111

S

rrst

S
magnetic moments in a 1 r
experiments and/or quark n
only is the sky	iondescripti
us a deep insight into the working of indu

	

gauge structure proposed in ref. 9 ) .

meter-free manner wh®..h agree surprrsrngly
et results. What transpires from these results is that not
n viable in the heavy-quark sector but also it provides

. The model

r, we study the usual Skyrme model that consists of the quadraticn this
current algebra term plus the Sk

	

e quartic term supplemented by symmetry-breaking
terms . Implementation of vector mesons as in refs . 4.s) would bring in additional
improvements. and so the results reported here can be considered as something that
can be definitely improved upon. We start with the effective action for the simple
Ski

	

e model with an appropriate symmetry breaking, expressed in terms of the
(3)-valued chiral field U (x) as

,f=

	

d4 -x-

	

ôL6 F; Tr [0,Ui~"U t ] +

	

1 , Tr [ [ Ufi~U U, Ufiû�U]']

	

+ rwz + rsB'
32e- (1)

where F, is the pion decay constant (= 186 MeV empirically), e is the so-called
Skyrme parameter and M4 denotes the (3 + 1)-dimensional spacetime manifold. In
eq. (1), Fwz is the Wess-Lumino action

* We use the normalization Tr(,IaAb) = 2dab .

I'wz = _ 1N` 2 j

	

Tr[(UtdU)5 ],
240n

	

V4 x [0,11

1-sBass =

	

d4x

	

âgF~ (mn + 2 mK) Tr [U + Ut - 2]~
M4

where Nc, is the number of colors (= 3 in nature) and TSB is responsible for the explicit
symmetry breaking of chiral symmetry . This symmetry breaking is partially due to the
finite mass of the pseudoscalar mesons . In the SU (3) case this effect can be taken into
account by ' 3,14)

+24 v~Fn (m2 _ M2 ) Tr [Äs (U + U')]} ,

	

(3)

where A8 is the eighth Gell-Mann matrix* and m,, and MK represent the pion and
kaon masses, respectively . The symmetry breaking term eq. (3) takes care of the mass
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difference inK > m,, but not necessarily, at least to tree order, of other flavor-symmetry-
breaking effects such as that FK A FA. The main effect of failing to account for the latter
is that the kaon is overbound to the soliton 2.4 ): This overbinding becomes more serious,
the heavier the OQ is. Riska and Scoccola '°) have indeed shown that this defect can
mostly eliminated if the difference in the decay constants is properly taken into account
in the lagrangian. Following their procedure, we introduce an additional symmetry-
breaking lagrangian " ) which naturally arises in chiral perturbation theory 15 )

22 _

~rsB = FK48F~

	

d4xTr
[(I

- ~A8) {2 ®ttK (U + Ut - 2
AI4

+ (UVuUt0PU + Ulopuoput~ }~ -

	

(4)

Therefore, our total TSB is given by

AB = rSB' + 6rSB .

	

(5)

We continue by introducing the Callan-Klebanov (CK) ansatz for the chiral field 1 )

UCK =

	

U,t U3

	

C,il ,

U3 =
exp

[
i ~2

	

O
t
K

	

(7)
( K

	

0

N=exp

	

T-X ,

	

K=

	

K ® ) .	(8)
[F,

	

K

Inserting eq. (6) into eq. (1) and expanding to second order in kwon fields, we can
obtain the lagrangian density of the system. However, to recover the canonical form
of the free kaon lagrangian when the interaction with the soliton is turned off, it is
convenient to renormalize the kaon field K as K/X, where X is

FK
X = --F�

This leads to the final form of our kaon-soliton effective lagrangian, which reads

f- _ LSU(2) + LK ,

i Fn Tr (âaUn0uU.) + 32e1
2 Tr puUnUn , a� U,~ Un~ 2

+ 6Fnm.Tr(U.+Un-2),

(DmK)tDeK - KtataflK - m2 KtK - 4mn1Kt (Un + U,t - 2) K
X

2

2F2 1KtKTr [auUX un ,C9VUnun1 2
8e F,7 'X2

-

	

1

	

_1 {2(DuK)tD�KTr(au a" ) + 2 (DuK)1DuKTr (t~�Un a"U,~~
e2 Fn X 2

(10)

-6(DmK)t [a4, av ] D�K1 -
tNr 1Bu [KtDmK - (DmK)tKI ,

	

(12)
Fn X2



where

d
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= â (NtO.N±NOIX)	(13)
( VIO

is the baryon current
1
,E

	

Tr [U (=Ull)Ult (00 Un) U.t(

	

.)] .

	

(14)
2 a

In comparing eq. (12) with the corresponding kaon lagrangian used in refs. 1,,_) (where
pions N®iere taken massl

	

), it is clear that the net effect of introducing the extra
symmetry breaking to

	

is the reduction of the contributions from the Wess-

utnino term and the Skyrme quartic term . Since the kaon binding energy is mainly

ete

	

fined by the Wess-Zumino term, its decrease by a factor of 1/Z - (for ,r > 1)
immediately leads to a smaller binding energy which goes in the right direction to
improve the O(ii) prediction of the model.

Followi

	

the standard procedure, we use the hedgehog ansatz

N = exp [-,' i°r-FF(r)]

	

(15)

to determine the soliton properties. The profile function F(r) is of course obtained
by minimizing the soliton energy. Given the soliton profile, one can proceed to solve
the eigenvalue equation of kaons moving in the background potential provided by the
soliton. This determines the kaon energy co which is ofO(NO ) in Nc counting and its
wavefunction k (r) . Finally, to obtain the (hyperfine) splitting between states with same
strange quantum number but different spin-isospin quantum numbers, the soliton has
to be rotated in the SU (2) isospace. This provides the O(1 /N,) contribution to the
mass. Details of this procedure which can be found in refs . 2°4

) will be omitted here.
So far, we discussed the procedure for strange hyperons. As proposed first in ref. 9 ),

charmed baryons can be described in the present model by formally extending the field
U to the SU (4) group . The generalized Callan-Klebanov ansatz can then be written as

* It should be stressed that we are not assuming a symmetry group here . It is just a convenience
in organizing the relevant degrees of freedom and can be easily avoided, as discussed in ref. '6) .
To the extent that we limit ourselves to quadratic order in OQ field, the two procedures are totally
equivalent.

U = Un U4 Un , (16)

where U,, represents the SU(2) sol'°^n field . The explicit form of Ua is
2

U�
N 0

=
) ,

(17)
0 1,

where 12 is the 2 x 2 unit matrix. For U4, we write

02 K D
U4

. 2 -\/-2-
= exp 1 t F Kt 0 0

n ~ Dt00 ) 1 (18 )
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with 02 the 2 x 2 null matrix . Here, K and D represent the K-meson and the D-meson
doublets, (so far generally denoted as OQ ), defined as

1 (K'

	

D = 1
X' KO

	

D

	

(19)
X2

(
D- ) '

where we have introduced different meson decay constant ratios X; for different flaw
mesons. Note that in eq. (18), the pseudoscalar DS mesons composed of S- and C-
quarks are not included to be consistent with the quadratic approximation that we
make in the meson fields 9) .

The hamiltonian as well as the equations ofmotion for K- and D-mesons are obtained
from the lagrangian of eq. (12) with eqs. (17) and (18) . Since interactions between
the K and D-mesons can be ignored within the quadratic approximation, the equations
of motion for K and D are formally identical, the only differences being in the meson
masses and the constants X's. We take the experimental meson masses, MK = 495 MeV
and MD = 1867 MeV. The values for the meson decay constant ratios X; will given
later.
The mass formula for the baryons is

M(I, J, n,, n2, J,, J2, Jm) =M~., + n,cv, + n2(02 + Mrot,

Mmt=~ I(I+1)+(CI-C2)[CIJI(JI+1)

- C2J2 (J2 + 0 ] + CiC2Jm (Jm + 1)

+ [J(J+ 1)-Jm(./,, + 1)-I(I + 1)l

(20)

[CI +C2

	

CI -C2JI(J,+1)-J2(J2+1)x

	

2

	

+

	

2

	

Jm (Jm + 1)

	

11,(21)
where M,., is the soliton mass and Z the SUM moment of inertia . Here n, is the
absolute value of strangeness, n2 the charm quantum number and to, and (02 are,
respectively, the bound-state energies of the K and D-mesons . In addition, c, is the
hyperfine splitting constant corresponding to K and c2 the one corresponding to D.
For completeness, the explicit expressions of Mso,, Z and c; are given in appendix A.
The angular momenta J, and J2 are defined as J; = n;j; with j; standing for the

angular momentum of the bound-state orbital (j; = i for the lowest-energy state in
which we are interested here) and Jm is given by J. = J, + J2, . . . , I A - J2 I . J is the
total angular momentum

J = R + Jm ,

	

(22)

where R is the rotor spin . Only J is a good quantum number: Neither R nor Jm
is separately conserved. Within our scheme, the quantum numbers of the physical
hyperons can be obtained by using the quantization rules described in ref. 17 ) . They are
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Even-parity J = ; and ; baryons. T14° :dates of .::c
and -':'i are mixed states of As = 0 and 1 . See table 2

and discussion in sect . 4.

TABLE 1

summarized in table 1 . Using table 1, we can easily read off the baryon wavefunctions .
In table 2, the wavefunctions of spin-up baryons are given in the basis, i.e ., I I, Iz ; S, C),
I R, R=)R I

	

J,, Jl.=)s I J2, J2,_)c .

3. Magnetic moments

Given the electromagnetic current Je.m . = J,~ +

	

1/3J~ obtained from our effective
lagrangian by means of Noether's theorem, the magnetic moment operator is of the
standard form

ju = 2 j d 3x r x je.m . .

	

(23)

A lengthy but straightforward calculation leads to the third component of N of the form

JU
3
= lus + JUV 9 (24)

Particle ! J S C R Jo JZ J,®,

N y 0 ~ 0 0 0
.1

_
-1 0 0 1 0

1 -1 0 1 0
1 -1 1 0

® a -2 0 ; 1 0 1
-2 0 1 0 1

0 -3 0 0 0
~lc 0 0 1 0 0 12 -12

1 0 1 1 0 ; a
r' 1 3 0 1 1 0

0 2 0 1 1

0 5 0 3 0 0
- 1 1 1 ; ; 1,0

_® è
2

-1 1
2

- 1, 1,0"i , ,
Ix *. . . C a2 32 -1 1 I2 d2 s 1
.QC 0 2 2

0 -2 1 0 1 -°,
S2'C 0 -1 2 0 ; 1

0 ; -1 2 0 °-, 1



Particle

	

State

I p) = 11,2

	

2 ;0,0)1 1 1 > 2)R

In) =12,-2;0,0)1 1 ;, 3)R

I n°) = 10,0;-1,0)1 10,0)R I ;, 2)S
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TABLE 2

States of spin-up baryons

I_r°) =11,a;-1,0)11

	

2 11,1)R I ;, - 2)S -

	

11,0)R I ;, 2)S}

IX-°) = 11,a;-1,0)1 11,1)R I I, 2)S

I`a) = I ;,a + ; ;-2,0)1{- %/3 1 1, 2)R 11,0)S +

	

I

	

-2)R I I, I)S

I *,ü) = I ;,a + ; ; -2,0)111,2)RI1,1)S

152 - ) = 10,0, -3, 0)1 10,(»R I1, 2)S

1A+) = 10,0;0,1)1 11,0)R 12, 2)c

IX°) = 11,a - 1 ;0,1)1{

	

11, 1)R 12,-2)c - ~ 11,0)R 12, 2)cI

iE~ ' a) = 11,a - 1 ;0, 1)1 1 1, 1)R I ~, 2)c

I-~ c = 12,a- ;;0,2)1{ -	12,2)R 11,0)C' + ~12,-2)R 11, 1)CI

1~c°) =12,a - 2;0,2)1 12, 2)R 11,1)C

I .Qc«) = 10, 0; 0, 3)1 10, O)R 12 , 2)c

1=-°) = I2,a -

	

1)1{

	

2 I2,-2)R 12, 2)S 12, 2)C -	12,2)R 12,-2)S I1 " 2)("}

I v~a> = 12,a - 2 ; - 1, 1>1 {-,~ 12,-2)R 12, 2)S 12, 2)('

-,~ I ;, 2)R 12,- )S 1 1 , 2)C +

	

3 12, )R 1 ;, )S 12, -2)('}

I :-,-C'°) = 12,a - 2 ;-1,1)1 12, 2)R 12, 2)S 12, 2)c

I .Q°) = 1 0,0; -2,1 )1IV 3 10,0)R 11, 1)S 1 1 ,- 2)C -	10,0)R11,0)S 12, 2)C}

1Qc'O ) = 10,0 ; -2, 1)1 10,0)R 11, 1)S 12 , 2)C.

I .Qcc) =10,0;-1,2)1{ -

	

10,0)R 12, 2)s 11,0)C + ~10,0)R 12,- ;)S 11, 1)C

I~cc: + ) = 10,0; - 1,2)1 10,0)R 12, 2)S 11, 1)C
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ps =

	

s,oR3 + ps,l
j

1
+

Jus,2
j
2 '

where S is the strangeness and C the vha

	

number and D33 is -13R3/d3/1(j + 1). The

. a's and

	

,~,,'s, expressed in units of

	

hr magneton, are given by

where

(k,;(,) = 11N

b(k. ,,XI) =

3

s,a = Cl so

s,? = c2 ,,o +

	

(

drr2 sineFF' .

	

(26)

",i

	

=b(k,

	

i,X i ) ,
,u,2 = b(

	

, 2,X2),

X2) ,

drr2 k2 s' ~F

,1 a
-'

	

4k`[

	

, sin' F cos2 yF + k2F'2 co~2 ; F + 3kk'F' sin F

	

,
~-F$ Xj

	

r-

	

(32)

1 1N i drr2	k2 COS2 '-,F (1 - 4sin2 .-~,F)

1 1
2

-~

	

,

	

.,	,

	

4k sin2 F cos'' iF (3 - 8 sin2 1F)
e-F~ X t

	

r_
+k2F02COS2 2F (1 - 18sin2 2F)

+ 2k'2 sin2 F + 3kk'F' sin F (3 - 4 sin2 iF)

(27)
(28)
(29)
(30)
(31)

+ 6` MN 0°

	

drr2k2 sin2 FF',

	

(33)
2 22

Fn g

	

X,

and we have denoted the D-meson field by OD*. As is obvious from eqs . (26)-(31),
the coefficients lc s, 2 and U�,2 can be obtained from the expressions for ,uS,, and lc�,, ,
respectively, by replacing the K-meson wavefunction, the eigenenergy co,, the hyperfine
constant c, and the ratio X, by the corresponding D-meson ones. It should be noted
that the sign of ,u s,2 is opposite to that of #,,, . The reason for the sign change in lc s ,2 is
that the charm number, C, of the D-meson is + 1, whereas the strangeness number, S,
of the K-meson is -1 .
The explicit formulas for the magnetic moment of each baryon are given, in terms

of the coefficients ys,i
's and lc�j's, in table 3 .

* The last term in eq . (33) was missed by the authors of ref. 7 ) . This term which comes from
the Wess-Zumino term plays an important role in the isovector moments yv,, and JUv,2 .
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TABLE 3
Magnetic moment formulae of baryons

Particle

	

Magnetic moment

p(p) = kO + 2#.,o2 3
ju(n) = -!,u,,o - 3u,,02 3

p(AO) =

3

	

6

	

+ 3,garl» = !

	

, p'a3
(, ps.1 - 1

	

+ Y.,j)3
#(Z*-+ ) = No + ig', + (P".o + P".,)2
P(Z*'O) = P,,O + -! .U,.,2

= .U,,o + ! jus., - (p,,r o +2
Y CZO)

	

-6L,p,,0 + 1p j - 1 (.u,,o + 2.u,,,3 9
-6!p,,0 + 1pj + 2 (,«,,o + 2pj )3 9

+ 13 (p,,o +
2jus,O	j us, 1 - 2 (.u,.o + 2p,,, 13
3

i(A+) -C 29 S ,2
9(1+ +

	

190

	

6

	

3A2 + 2 (.UvO + Uv,2c 3
1,(-Y~+) - 211s'o - i

C 3 69s,2

9(10c

	

1 -UsO

	

«I JUs,2 - 1(9v0 + àUv,23 6 3
+

	

gsO +

	

Ps,2 + (.UvO + gv,29 (-rC
Y(Ic

	

Ps,O + 2Ils,2
0

9

	

PsO +

	

(9v,O + gv,2)2

Y(-C* ,0 ) = 4s'O + ! Ys, 1 + 'I fls,2 - 3~ ( .Uv,O + Yv, 1 + luv, 2 )2 2 2
Y(o0)

	

1,4s,l - Igs,23 6
*0

WC

	

f4s,1 + 2«LJU

	

Ps,2

PWcc

	

6 Ys, 1 + 23 Ils,2

JU (12ci +

	

Ys,1 + Ps,22

P(-CC

9( cc

9(-CC*'+ +

,4 (_,C
=*,+ ) -

«I ~6.Us,O + 3Ps,2 9 (liv,o + 2pv,2

+ 13 -Us,2 + 29 (p v ,O + 2pv,2)

12«I .UsO + Us,2 + 3 (yv o + 2.uv,2)
1 90 + Ps,2 3 (.Uv,O + 2#v,2

A(M) = 242

WC 21 42
2Ceo) 2I .Us,2

A(-CI '! 1 «1 13 Ys 'O + 3 Ys, 1 6 Ps,2 + 9 (ilv,O + Uv,1 + JUv,2

y(-c0 ) = 1 1 - «I - 13 JUS,O + 3 JUs, 1 6 -Us,2 9 (9v,O + Yv,1 + Uv,2 )
+

« I 12! PS,O + 2lps,l + 2jys,2 + 3 (9v,O + Ilv, 1 + Uv.2
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The mass formula eq. (20) with (21 ), despite its opaque form, essentially reflects

the synunetjgv structure of the model and hence is generic of the meson-soliton bound

picture independently of dynamcal details of the effective lagrangian . The dynamics is

encoded in what we will call mass parameters": Als,,,,1, c,, c2, oil and cat. It has been

shown in ref. ") that when these quantities are determined by fitting the experimental

masses of

	

, J, . . Y. .°I, and

	

-, eq. (21) gives predictions for the hyperon masses
which are in a remarkably g

	

agreement with the existing empirical data and with
rk model predictions for octet and decuplet baryons. We will refer to the values

of these quantities so determined as -empirical" (i.e ., between quotation marks to
distinguish them from truly empirical quantities) and demand that our dynamcal
models predict these quantities . The "empirical" values are 9 )

}.
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4. Numerical results

m1

	

, =866

ca, = 223

eV,

	

i = 1.01 fm,

eV ,	co,= 1418McV,

c, = 0.604,

	

c, =0.140 .

	

(34)

In our numerical calculation, we will consider two sets of parameters in the SU (2)

sector. In one case, we consider the chiral limit in the SU (2) sector, in. = 0, and fit

F-; and e to reproduce the "empirical values of 11s,,,, and 2 . This corresponds to the
result of ref. °s )

F = 129 MeV ,

	

e = 5.45 .

	

(35)

The second set of parameters is obtained for in ., = 138 MeV. It corresponds to the
result of ref. '9 )

F,z = 108 MeV ,

	

e = 4.84 .

	

(36)

The predictions of the "mass parameters" in the strange and charm sectors for two
sets of X, are given in table 4. In one case we set X,,2 = 1 . This corresponds to
switching off the extra symmetry breaking term 6FSB given in eq . (4) . As mentioned
before, flavored mesons are overbound to the soliton in this case . This effect is present
for both massless and massive pions. When 6I-SB is included, we use the empirical
ratio X, = 1 .22 in the strange sector. On the other hand, the empirical value of the
ratio X2 = FD/F,, is not very well established. In the case of massless pion, we choose

X2 = 1 .8 which falls well within the range given in ref. 2° ), i.e., FD/F� = 1 .8 f 0.2 .
In the case of massive pion, we use a slightly larger value X, = 2.0 to obtain a better
agreement with the "empirical values" . In table 5 we show the baryon masses predicted

* In view of the fact that there is paucity of data in the charm sector, this procedure may not be
as reliable as it is in the strange flavor sector. We will see later that our model with its predicted
parameter values gives results in the charm sector which are in better overall agreement with
quark-model results both in the spectra and in the magnetic moments than the "empirical" fit
does .
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TABLE 4
Mass formula parameters entering into eq . (21) calculated within our
model. For the case of Ina = 0 we use the values of F,, and e given in
eq . (35), while for in, = 138 MeV we use those given in eq. (36) . In

both cases Mme , = 866 MeV and 2 = 1.01 fm.

TABLE 5
Baryon masses. Column `Emp.' is calculated from the -ennpiricai"values
ofeq. (34) as in ref. 9 ) . "SET IA means the results of in, = 0. F, = 129
MeV, e = 5.45, X, = 1 .22 and y, = 1 .80, "SET 11- the results with
in,, = 138 MeV, F� = 108 MeV, e = 4.84, y, = 1 .22, y2 = 2.00. All

values in MeV.

Particle

N

Exp .

939

Emp.

939

SET 1

939

SET II

939

Ref. --) Ref '-3 )

A 1232 1232 1232 1232
A 1116 1116 1-106 1086
E 1193 1193 1203 1205
1* 1385 1370 1350 1320

1318 1339 1332 1311
-Z * 1530 1516 1480 1425
Q 1672 1669 1621 1549

Ac (2285) 2285 2172 2209 2200 2260

Ec (2453) 2453 2327 2379 2360 2440

E1 ? 2494 2387 2417 2420 2510

? 3752 3513 3601 3550
«. 9 3793 3574 3639 3610

Occc ? 5127 4791 4898 4810

(2470) 2499 2381 2426 2420 2480

? 2636 2509 2514 2523 2575

? 2649 2524 2539 2531 2645

Oc (2740) 2786 2643 2647 2680 2730

921 ? 2811 2674 2662 2720 2790

Ock. ? 3939 3700 3764 3730

92«. ? 3964 3730 3778 3770

y, tu, (MeV) c, 1!2 oi-) (MeV) c'

na,~ = 0 1 .00 153 0.62 1 . 760 0.16
1 .22 221 0.50 1.80 1303 0.21

Ing 0 1.00 146 0.51 1 . 744 -0.02
1 .22 209 0.39 2 . 1342 0.13
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by our model in comparison with the available experimental data 2 ° ) and with the

quark model predictions of refs . 22.23 ) . The "SET I" corresponds to

and the "SET II" to

e observe that our model, with or without pion mass, works very well for both

strange a charmed baryons. In fact, the predictions of the model are as a whole

in closer agreement with the quark model results for the charmed baryons than the

"empiri r fits. This suggests

	

at we should do an overall fit rather than fix the

necessary parameters to the empirical values whose validity may be somewhat doubtful

in the massive-quark sector. We apply this remark to magnetic moments discussed

low. It is interesting to note that for "SET I� our results for the masses of B-e and

,=, differ slightly from those given in ref. a® ) where the same set of parameters was

The reason for this difference is that here we use strange-charmed cascade wave

functions which are linear combinations of those used in ref. 10 ) . We will come back

later to this point which has a dramatic effect in the magnetic moments of these

cles.
fore discussing our predictions for the baryon magnetic moments, we summarize

the present status of the quarkmodel results available in the literature. Since experi-

mental data are not yet available for charmed baryon magnetic moments, we will make

comparison with quark model predictions. In fact in making a "model-independent"

analysis of the sort we made for the masses, we will have to resort to quark-model

predictions of the coefficients ps,2 and 14,2 .
Choudhury and Joshi 24) calculated the magnetic moments of charmed baryons, ex-

pressing them in terms of the proton and neutron magnetic moments via U(4) symme-

try. Subsequently they used U(8) symmetry to express them all in terms of the proton

magnetic moment, pp [ref. 25) ] . Lichtenberg 26 ) used a quark model implemented by

the gauge structure of QCD considered by De Rtijula, Georgi and Glashow 22 ) and

obtained results which differ significantly from those of Choudhury and Joshi. Only in

the limit of equal quark masses do the results of ref. 26 ) reduce to those of Choudhury

and Joshi. The calculation of Jena and Rath 27) of the magnetic moments of spin-i
charmed baryons in a relativistic logarithmic potential model is, on the other hand,

in good agreement with that of Lichtenberg. We take this to mean that Lichtenberg's

results are more reliable than those of Choudhury and Joshi . Furthermore, Bose and

Singh used the MIT bag model 28), obtaining results which are in a fair agreement
with those of Lichtenberg. For instance, Lichtenberg's magnetic moment relation [our

notation for the mixed (S = -1, C = + l ) cascades differs from that of ref. 26), see

below .

% = 138

	

eV ,	Fz = 108

m,, = 0,

	

F, = 129 MeV,

	

e = 5.45,

	

XI = 1 .22,

	

X2 = 1 .8,

	

(37)

eV,

	

e = 4.84,

	

XI = 1.22,

	

X2 = 2.0 .

	

(38)

li(f') = .u( -C ) _ ~(y°)

	

(39)
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holds

well in the MIT bag model

.

In this work we will compare our results with those

of

both ref

.

26 ) and ref

.

28), keeping in mind that the present available quark-model

results

may not be fully realistic and hence may not describe nature accurately

.
As

in the case of the mass formula, the magnetic moment formula eq

.

(24)

with

eqs

.

(26)-(31) can be considered in a model-independent way

:

It re

the

symmetries of the model

.

Thus we may determine the coefficients #,i's and

#,;'s

from experiments and/or quarkmodel results

.

The "magnetic moment

pa
rameters'"

so obtained will be referred to as "empirical"

.

The dynamic al content

of

a specific model can then be judged by the extent to which the model values

agree

with the "empirical" ones

.

The coefficients p,o, p,,,, u,,,o and uW

.,

are deter-

mined

by fitting the magnetic moments of the proton, neutron and strange baryons

to

the experimental values by the least-square fitting*

.

There are no experimental

data

available to fix A2 and PV,2, so we wilt fix them to Lichtenberg's quark-

model

values for charmed baryons

.

The "magnetic moment parameters" so obtained

are :

us.2

= 0

.740,ßs,0

= 0

.880,

	

ßs,,

= - 1

.188,

o

= 3

.530,

	

fit�,,

= - 0

.934,

	

lß`,2

= - 0

.695 .

	

(40)

In

the case of massless pion the calculated coefficients in the SU(2) sector are 18)

Pk,o

= 0

.555,

	

u~,o

= 2

.402,

	

(41)

while

for mr = 138 MeV one obtains 19)

ps,o

= 0

.735,

	

pv

o = 2

.402 .

	

(42)

Note

that in both cases the calculated values are below what we call "empirical"

magnetic

moment parameters

.

This leads to a rather small value for the magnetic

moment

of the proton yp [refs

.

18-19) ]

.

Indeed, using the parameters eq

.

(41) and

eq.

(42) we obtain lip = 1

.88

and pp = 1

.97,

respectively

.

These values should be

compared

with upp = 2

.79

[ref

.

21)1

.

In contrast, the nonrelativistic quark model

predicts

2') ,upM = 2

.79

in close agreement with the empirical value while in the

bag

model one gets 29) ppM = 1

.90 .

On the other hand, it has been established

that

the soliton models predict the ratio U

�/pp

quite accurately

.

As we shall see,

the

ratios of the magnetic moments for both strange and charmed baryons do come

out

fairly well

.
The

predicted "magnetic moment parameters" for the same parameter sets as used to

calculate

the "mass formula parameters" are given in table 6

.

From tables 4 and 6, we

observe

that the kaon energy, to,, increases whereas the hyperfine constant cl decreases

for

an increasing X,

.

Therefore the isoscalar magnetic moment in the strangeness

direction,

p,,,, is affected as it is closely related to the hyperfine constant

.

In contra

the

variation in X does not modify significantly	

In

the charmed sector, thin

*

In refs

.

7,s ), the authors determined the "empirical" moment parameters by fitting the

moments

of the proton, neutron, AO and E

.
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,netic moment parameters entering in eq. (25) in the unit
hr magneton. The input parameters for the massless and
massue pion cases are the same as in table 4.

Ing 0
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TABLE 6

a bit different Both the

	

m sn energy w2 and the hyperfine constant c2 increase
for an increased

	

2* . The absolute value of ji,I is small compared to the empirical
moment parameter of eq. (40), but this can be enhanced by introducing vector mesons
as indicated in refs). The dependence of both 11,2 and pv,2 on y, is quite similar to
the strangeness case.

In comparing the values of

	

,,I for XI = 1 given in table 6 with those reported in
ref. ') (® -0.05 for massless pious and -0.06 for in~, = 138 1VIeV) we notice that
the effect of the last term in eq. (33) is to increase the absolute value of P,, I by more
than a factor of 2. However, our calculated values are still much smaller than the
"empirical" ones. We expect that the inclusion of other degrees of freedom, e.g . vector
mesons, in our effective action can bring some additional improvement in the model
predictions.
The calculated ratios of the baryon magnetic moments to that of the proton are given

in table 7 in comparison with the existing empirical data 21 ), quark model and bag
model calculations . The magnetic moments given in table 7 can be obtained simply
by putting into the formulas of table 3 the set of magnetic moment parameters shown
in table 8. As mentioned above, the parameters are generally in good agreement with
experiments and/or quark model results for the isoscalar moments even in heavy flavor
sector. On the contrary, the values of u,, I and Pv,2 are smaller than the empirical ones
by factor of 3 ti 5 in the both cases of massless and massive pions . This fact mainly
causes the differences between the predictions of this model and of experiments (or
quark model) for the non-zero isospin baryons.
Among the magnetic moments listed in table 7, those for the cascades that contain

one S-quark and one C-quark require clarification . If one uses the wavefunctions of
the model as calculated in ref. 9 ) for such cascades, i.e ., F,

I,
S,0 ) S, + and Z.° , then

their magnetic moments take the following expressions
À (yc+ ) =

	

I

	

I

	

I

	

2- 6 Ius,O + 3 ~s,1 + 3 ~s,2 - q (Iuv,O + ~v, I

	

+ luv,2 ) ,

* On general grounds, as discussed in ref. 16), one expects c2 to decrease for increasing w2. This
suggests that something may be missing in the model. For the present system it does not seem
too serious, so we shall not pursue this issue any further .

sXi s.à Pv,I X2 1Â s,2 Pv,2

1 -0.83 -0.12 1 . 0.61 -0.12
1®22 -0.78 -0.13 1 .80 0.40 -0.10
1 -1.19 -0.14 1 . 0.63 -0.12
1 .22 -1 .07 -0.16 2. 0.40 -0.10
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TABLE 7

Magnetic moments of baryons. SET I and SET 11 are the same as in
table 5. "Quark model� stands for the results of ref. 26) and "Bag model�
for refs. 28.29) . All moments are given relative to the proton magnetic

moment .

Particle Exp. SET I SET II Quark model Bag model

p 1 .00 1.00 1.00 1.00 1

n -0.68 -0.70 -0.63 -0.67 -0.67

A° -0.22 -0.21 -0.27 -0.21 -0.25

£+ 0.87 1 .07 1 .10 0.96 0.97

10 - 0.27 0.34 1,1.29 0.31

£- -0.41 -0.54 -0.42 -0.38 -0.36

£*.+ - 1 .29 1 .24 1 .13

£*,° - 0.09 0.10 0.13

£*.- - -1.12 -1.04 -0.87

=°r -0.45 -0.58 -0.66 -0.50 -0.56

-0.24 -0.07 -0.19 -0.16 -0.23

*°r - 0.49 0.35 0.25

*-r - -1 .03 -1 .07 -0.75

S2- - -0.63 -0.82 -0.62

A± - 0.11 0.10 0.13 0.18

£l++ - 0.98 0.99 0.85 0.70

£l+ - 0.16 0.21 0.18 0.13

£° - -0.65 -0.56 -0.49 -0.44

£~.++ - 1 .62 1 .64 1 .47 1.40

0.40 0.47 0.47 0.48

£c'° - -0.82 -0.69 -0.53 -0.43

- -0.17 -0.17 -0.04 0.06

â+ - 0.35 0.32 0.29 0.31
--*.++ - 1 .14 1 .13 0.93 0.91rr cc
-*,+ - -0.42 -0.35 -0.07 0.07

S2,C - 0.32 0.30 0.40 0.52

,.rC+ - 0.11 0.10 0.13 0.18

- 0.11 0.10 0.13 0.18

~C+ - 0.44 0.39 0.26 0.17

- -0.59 -0.57 -0.41 -0.39
=*,+ - 0.81 0.74 0.59 0.55rC
=*,° - -0.72 -0.71 -0.41 -0.36yC
920 - -0.31 -0.40 -0.32 -0.35

QC,° - -0.31 -0.44 -0.28 -0.28

01 - 0.21 0.23 0.25 0.30

921j+ - 0.01 -0.07 0.06 0.14



netic moment parameters relative to the proton magnetic moment.M
SET 1, SET 11 and "Quarte model" are the same as defined in table 7 .
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TABLE 8

0.72(-0.70,-0.82),

	

au(

	

) =0.13 (0.26, 0.14) ,

(43)

These are significantly different from the corresponding formulas given in table 4*.
Eq. (43) predicts

1 .71(1 .72,1.80),

	

u( "7~® ) _ -0.83(-1 .17,-1 .06),

	

(44)

where the number outside of the parenthesis corresponds to using the "empirical"
magnetic moment parameters, the first number inside the parenthesis to the calculated
magnetic moment parameters : ,r m, = 0 and the second to the same for m. =
138 MeV. These should be compared with the quark-model results y (-C) = 0.37,
u (_0) = 0.37, y (Ec+ ) = 0.73 and ,u (Ec'° ) = -1 .07 .
The difference between the two can be readily understood by noting that the two

wavefunctions are related to each other by an orthogonal transformation. To see this,
recall the angular momentum coupling of the mesons when two mesons of different
species are involved . In refs . 9.1° ), when there are two mesons of different flavors
bound to the soliton, their spins are first coupled to Jm = 0 or 1 which is then
coupled to the rotor angular momentum R to give the total spin . As the rotor wave
function represents the contribution of the light flavor quark q, we will call this
the q (SC) coupling scheme . On the other hand, the quark-model wave functions
for these mixed cascades are constructed in a different representation . There the S-
quark is first coupled to the light quark q to give J;� = 0 or 1 which is in turn
coupled to the C-quark to give the total angular momentum . We call this the (qS) C
coupling scheme . Clearly the bound-state model wave function of ref. 9 ) is a linear
* The use of different wave functions also affects the predicted values of the _c and -cl masses .
However the modified values (e .g ., 2540 MeV for Ec and 2596 MeV for _c' with the "empirical"
mass parameters) are not so different form those given in table 5 .

Ps.0 Ps .1 Ps.2 PV,o PV,1 Pv,2

Exp. 0.315 -0.425 - 1.264 -0.334 -
SET 0.295 -0.417 0.213 1.278 -0.070 -0.055
S 11 0.373 -0.545 0.203 1.219 -0.079 -0.052

Qu rk m 0.333 -0.415 0.270 1 .250 -0.250 -0.250
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combination of the quark wave functions, the relation being given by recoupling
(Racah) coefficients* .

Strictly speaking, in the bound state model the baryon wave functions are defined to
0(g) . At this order, both cascade states are degenerate in energy. This degeneracy is
lifted at O(Nj' ) when rotational corrections are included . However, within our scheme,
this correction is treated only in first-order perturbation theory and consequently
we cannot distinguish between the different linear combinations . There is of course
the possibility of diagonalizing the rotational hamiltonian in the subspace of the
mixed cascades . However, this would require going beyond O (Nj °) which w be
inconsistent since effects oforder higher than O (Nc ' ) have been systematically ignored
in the calculation. Therefore - and in order to make a meaningful comparison with the
quarkmodel results - for the mixed cascades, we perform a linear combination to give
the quark-model representation. The resulting magnetic moments (for the "empirical"
magnetic moment parameters) are

P (~C ) =0.37(0.37),

	

it ( "7C + ) = 0.62(0.73),

50

.t(~°) =0.37(0.37),

	

~(-c° ) = - 1 .07(-1 .13),

	

(45)

to be compared with Lichtenbergs quark model values in the parenthesis. We now see
that the agreement is equally good in the mixed cascade sector and that the magnetic
moment relation )f eq . (39) holds as well. The results given in table 5 and 7 correspond
to this combination of the wavefunctions .
An interesting observation to make here is that the magnetic moments of the mixed

cascades are very sensitive to the wavefunctions. For instance, suppose we take our
hamiltonian truncated with no K-D interactiOns and diagonalize it exactly for the
mixed cascades (although it implies going beyond O (Nc- `) as already mentioned).
Then we obtain

(~~) - -0.50 ,

	

ju(-c + ) = 1.49,

	

(~°) - -0.67 ,

	

ju(-C° ) _ -0.03 .

Although the mixing is small, the effect on the magnetic moments is substantial .
Implications of this sensitivity to the wave functions will be discussed below.

5 . Conclusions

It is shown in this paper that the skyrmion description works equally well for
massive-quark baryons as it does for light-quark systems . The effective lagrangian used

* There seems to be some confusion about the symbols used to denote the mixed cascades . As
in ref. 30), throughout this paper, we use the symbol H, for the state with the lower mass and --'C
for the higher mass. In the (qS)C basis this corresponds to using the symbol He for the state in
which q and S are in the antisymmetric configuration (previously called the A state) and -cl for
the one in which they are in the symmetric configuration (previously called the S stare) . Note
that our notation differs from that of refs. 26,27) .

** If quark-model wavefunctions are recoupled in the representation corresponding to the
wavefunctions of ref. 9 ), they give, p (-c ) = -0.76, u (-°) = 0.17, #(_"7c1 + ) = 1 .85 and
p(_c'°) = -0.93, close to what we get in our model .
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was the original Skyrme model which consists of the usual current algebra term plus
the quartic Sky

	

e term supplemented by symmetry-breaking terms that account for
a

	

and decay constants of the pseudoscalar meson doublets OQ containing the
massive quark

	

. Implementation of vector meson degrees of freedom is expected to
improve even more on the predictivity of the model .

t is particularly noteworthy that with only two parameters needed for light-quark
(u a down) systems, and masses and decay constants taken from empirical sources,

et is able to fit not only the masses but also the magnetic moments of strange
charmed baryons. The agreement with experiments and quark-model predictions

is quite remarkable and suggests strongly that the model is close to nature in its physics
content . At first sight . this is surprising since the skyrmion model looks so different
from the quark description. The crucial feature of the model is that a massive scalar
oublet ca

	

ing the flavor quantum number of the massive quark gets bound to and
by the SU (2) soliton, the quantum numbers arising through topologically
transmutation, much as what happens to a scalar doublet in the presence

t- olyakov monopole and to diatomic molecules with electrons coupled
to slowly rotating diatoms "6 ) . The dynamics of the model is encoded in the Wess-
umino to which controls essentially both fine and hyperfine structure splittings . As

discussed in ref. 16), the essential dynamics can be understood in terms of a hierarchy
of induced gauge (Berry) connections generated in integrating out layers of length
scales .

ne potentially important difference between the soliton model discussed here and
the quark models is that while masses are insensitive, the magnetic moments for the
mixed cascades (and onl t" for the mixed cascades) are quite sensitive to the mixing
tween different flavor components ignored in the model . The wave functions used

in refs. 9-1® ) lead to magnetic moment predictions for the mixed cascades that are
markedly different from those of the quark models. It should however be noted that in
our model, within the approximations we make, any linear combination of the mixed
cascades will give the same energy to leading order and hence cannot be distinguished
by energy considerations alone. Therefore in comparing with the quark-model results,
we are allowed to rewrite the wave functions of the soliton model in the representation
used in quark models . This is what we have done for the results given in table 7 .
The higher-order terms thus far ignored in the model will certainly lift the degeneracy
and could give us unique wavefunctions . Note that the situation is similar in quark
models 31

) . Experimental data will eventually tell us which pictures are closer to nature .
It may well be that none of the two schemes is correct .

the
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Appendix A

In this appendix we write down the explicit expressions of the quantities M,,,,, I
and the hyperfine splitting constants c; appearing in eq . (20) . They have n deriv
elsewhere .
The soliton mass M.., is given by the expression

Mme, = 471

	

dr r2

	

_F$

	

F'-' + 2 sin F

	

+

	

1

	

sineF

	

sin' F + 2F'2S

	

r2	2e2 r2 r~
+4rn F~2 (1 -cosF)} ,

	

(A..1)

and the SU (2) moment of inertia 2' by

Z = 2ZF

	

dr r2 sin2 F

	

1 +

	

4

	

F®' + sin2,F(

	

(A.2)
e`F

'

In addition, eq . (20) contains the hyperfine splitting constants c, The cQ for K and
are formally identical, so we quote only the kaon sector
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