
Top Quark Properties and searches for the Higgs Boson at CDF

Ricardo Eusebi

Lederman Fellow, Fermi National Accelerator Laboratory

Experimental Particle Physics Seminar CONEA, Centro Atomico Constituyentes January 24th, 2008

Fundamental Questions

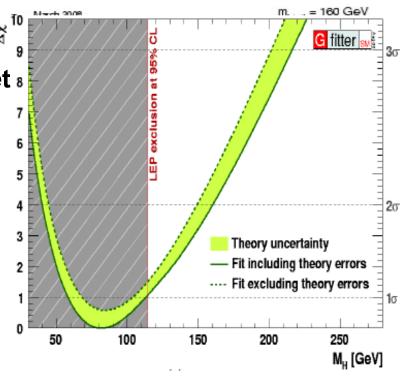
Fundamental questions of Contemporary Physics

- What is dark energy? Dark matter?
- What's the deal with neutrinos?
- Why so many particles? What's the reason for their masses?
- Are there other symmetries ?
- Are all the forces related at some high energy?

Standard Model of particles and fields (SM)

- Electroweak symmetry (EWS). Massless particles predicted.
- ⇒ The Higgs field breaks symmetry (EWSB) generating mass. Predicts h^{0(SM)}.
- ⇒ But we can't find the h⁰. Maybe another mechanism in place?
 New particles?

The unknown mechanism of EWSB is a key aspect to help answer some of the fundamental questions of the Universe.


Top quark

- Large mass suggest it plays an important role
- ⇒ Fermion to which coupling to Higgs is most important, $y_t=M_t/v \approx 1$.

New physics related to EWSB and thus likely to couple to top

- Standard Model (SM): 1 Higgs doublet s
 - ⇒ EWSB → One Higgs boson, h^{0(SM)}
 - Decays to bb , ττ, etc.
 - Excluded by LEP up to ~114 GeV
 - Plenty of room to be hiding

Top and Higgs datasets are the natural samples to look for physics beyond the SM

Jan 24th, 2008

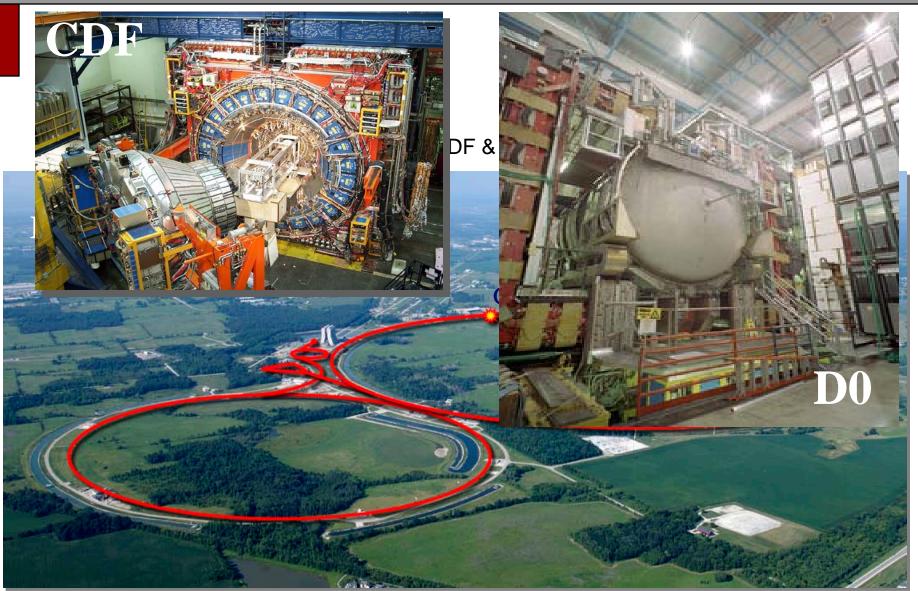
Chapters

Motivation: Fundamental Questions

Fermilab, the Tevatron, and CDF

Producing and Finding Top Quarks

Top Properties


Searching for the Higgs Boson

Summary

 $\overline{}$

Fermilab, the Tevatron and CDF

Tevatron Experiments

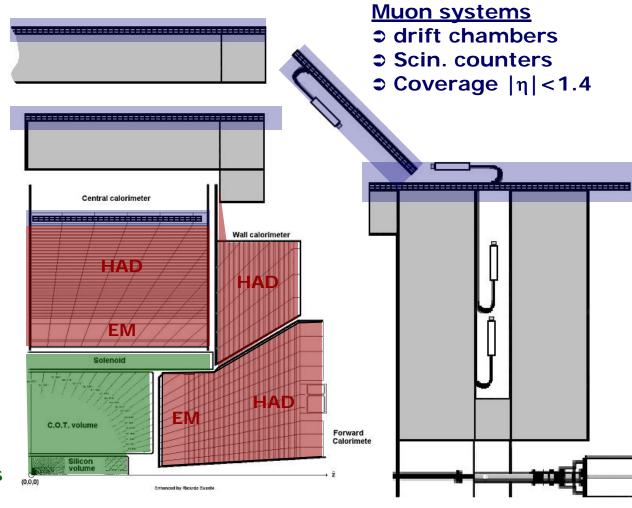
Tevatron Integrated Luminosity

• Tevatron is performing extremely well ~58 pb⁻¹ / week! Collider Run II Integrated Luminosity 5000.00 60.00 50.00 Weekly Integrated Luminosity (pb^{.1}) 4000.00 Run Integrated Luminosity (pb⁻¹ 40.00 3000.00 **Analyses in this talk** 30.00 use 0.9 - 2.7 fb⁻¹ 2000.00 20.00 1000.00 10.00 214 233 252 271 290 Week # (Week 1 starts 03/05/01) Weekly Integrated Luminosity ----- Run Integrated Luminosity

• Expect 6-8 fb⁻¹ datasets by end of 2009

The CDF II Detector at the Tevatron

Quadrant of the CDF II detector section view


Sampling Calorimeters

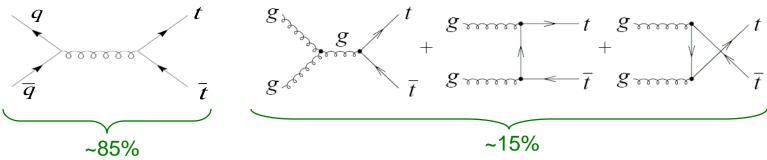
- ⇒ Iron/scin (HAD)
- ⇒ Pb/scin (EM)
- ⇒ Coverage |η| < 3.6
 </p>

 E_{em} $\sqrt{E_{em}}$

Tracking system

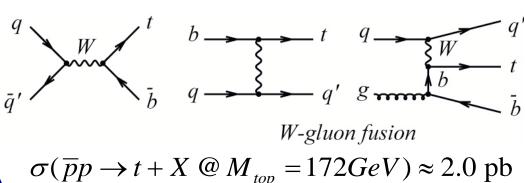
- ⇒ Solenoid 1.4 Tesla
- ⇒ Central Outer Tracker Drift chambers
- $\Delta P_T/P_T = 0.15\% P_T GeV^{-1}$
- **⇒** Silicon Detectors
 - determination of secondary vertexes
 - ⇒ 40µm resolution

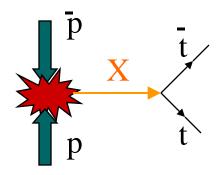
 $\overline{}$


Producing and Finding Top Quarks

 \circ

Top Quark Production at the Tevatron


produced in pairs via the strong interactions.

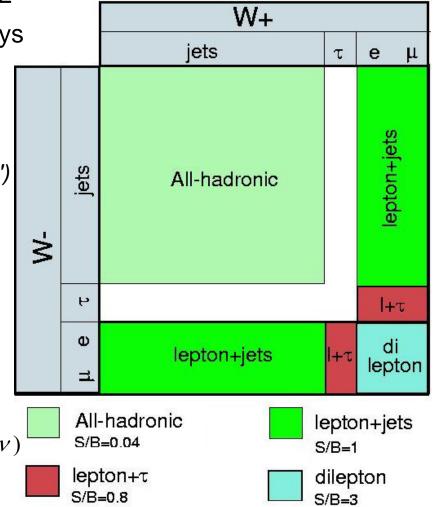

$$\sigma(\overline{p}p \rightarrow t\bar{t} @ M_{top} = 172 GeV) \approx 7.3 \pm 0.9 \text{ pb}$$

one top pair event every 10¹⁰ inelastic collisions

single produced, in association with other particles

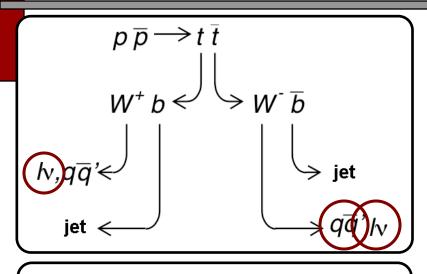
Through resonances ??

Topcolor-assisted Technicolor


Top Pair SM Signatures

In the SM, BR(t→W+b) >0.99 @95%CL

Final state is given by W⁺ and W⁻ decays


- \Rightarrow All Hadronic channel ($tt \rightarrow bqq'bqq$)
 - **⇒** Large BR
 - Small S/B
- ightharpoonup Lepton (e, μ)+Jets channel ($tt \rightarrow blvbqq'$)
 - Second large BR

 - overconstrained kinematics
- ightharpoonup Dilepton channel : (tt o blvblv)
 - ⇒ BR is ¼ of L+Jets
 - cleanest channel
 - underconstrained kinematics
- **⊃** Lepton + Had. Tau channel($tt \rightarrow blvb\tau_h v$)
 - Very small BR
 - ⇒ S/B~1

Typical Selection Criteria

- Cylindrical coordinate system:
- \circ θ : polar angle w.r.t. to proton direction
- φ: azimuthal angle
- \Rightarrow Pseudorapidity: $\eta = -\ln\tan(\theta/2)$
- Transverse energy:

$$\vec{E_T} = \sum_{\text{cal towers}} E_i(\sin \theta_i, \phi_i)$$

Missing transverse energy ("MET"):

$$\vec{E}_T = -\sum_{\text{jets}} \vec{E}_T - \sum_{\text{leptons}} \vec{p}_T$$

- Lepton + Jets: tt → Wb Wb → Ivb qq'b
 - ⇒ Isolated lepton with $p_T > 20 \text{ GeV/c}$
 - Neutrino: missing E_T ("ME_T") > 20 GeV
 - 3 jets within |η| < 2 with E_T > 15 GeV,
 4th jet: E_T > 8 GeV
 - ⇒ 0, 1, ≥ 2 identified jets from b quarks
 ("b-tags")
- Dilepton: tt → Wb Wb → Ivb Ivb
 - Two oppositely charged leptons with $p_T > 20 \text{ GeV/c}$
 - ⇒ Two neutrinos: ME_T > 25 GeV
 - ⇒ ≥ 2 jets within $|\eta|$ < 2.5 with E_T > 15 GeV
 - Scalar sum of lepton p_T's, jet E_T's and ME_T: H_T > 200 GeV
 - **⊃** 0, 1, ≥ 2 b-tags

Understanding the sample composition

Cross section requires understanding of all processes in sample

Sample-composition estimator

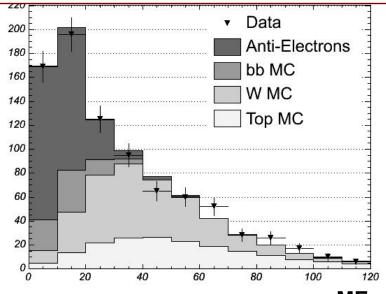
- Performed in a jet-bin basis
- Based on the pretag data
- Predicts sample composition in the tagged sample

Components in pretag data:

- **⊃** t̄t̄
- \Rightarrow WW,WZ,ZZ,Z/ $\gamma \rightarrow \tau \tau$
- single top
- non-W
- ⇒ W+jets (W+HF, W+LF)

Production cross section relatively well known

Handle on these processes: MET


Theoretical cross section with large corrections

Non-W component

Non-W processes :

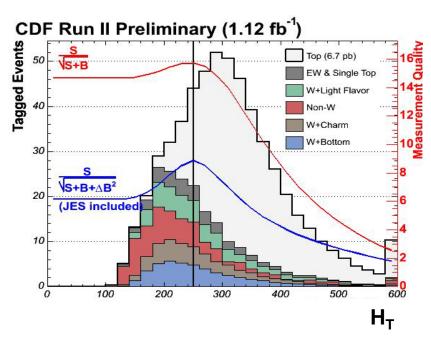
- \Rightarrow have low missing $E_T \Rightarrow$ use ME_T shape to estimate it
- setimate as a fraction of total pretag events, Fnon-W
 - of for each jet-bin, in each tagged bin
 - ttbar cross section fixed to SM expectation
 - Normalization of other processes left floating

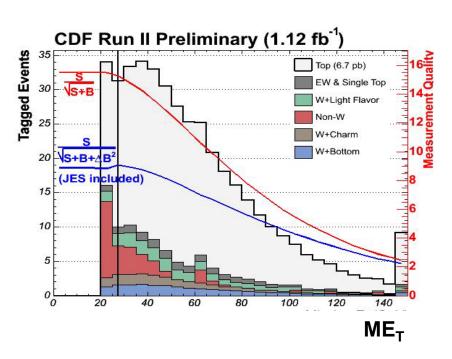
Example: in 3-jet bin, ≥1 Loose

	1-jet	2-jet	3-jet	≥4-jet	
F_{non-W}^{pre} (%)	9.7 ±0.1	16.2 ±0.1	20.1 ±0.3	20.8 ±0.9	
Loose					
$F_{non-W}^{tag} (\%)$ $F_{non-W}^{2tag} (\%)$	0.25 ± 0.01	1.2 ± 0.1	1.9 ± 0.1	2.3 ± 0.3	
F_{non-W}^{2tag} (%)	_	0.05 ± 0.01	0.21 ± 0.05	0.38 ± 0.17	
Tight					
$F_{non-W}^{tag} (\%)$ $F_{non-W}^{2tag} (\%)$	0.19 ± 0.01	0.80 ± 0.02	1.4 ± 0.1	1.8 ± 0.3	
F_{non-W}^{2tag} (%)	-	0.03 ± 0.01	0.09 ± 0.03	0.31 ± 0.12	

`

Top Quark Properties

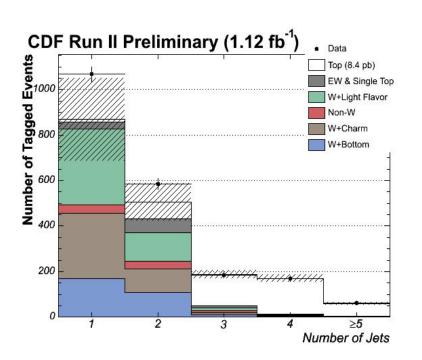

O

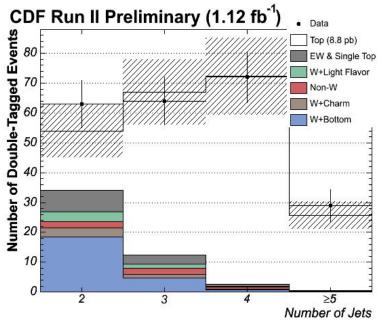


- Production properties
- Intrinsic properties
- Decay properties

Measuring the cross section

⇒ First optimize cuts: example for ≥ secVtx tags.




Measure the cross section

- \supset Assume $t\bar{t}$ production cross section, $\sigma_{t\bar{t}}$
- ightharpoonup Measure a new $\sigma_{t\bar{t}}$ and iterate until convergence

Top Cross Section Results

- After statistical treatment to consider the iterative process
 - \Rightarrow ≥1 tight tag: σ =8.4 ± 0.6(stat) ± 0.9(syst) pb,
 - \Rightarrow 2 tight tag: σ =8.8 \pm 0.8(stat) \pm 0.8(syst) pb,

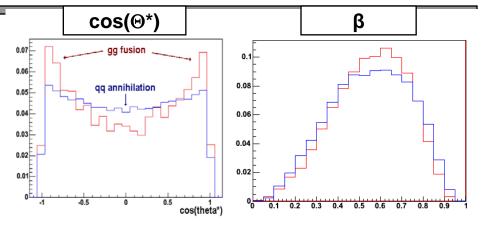
Results obtained for a variety of cuts. i.e. with and without Ht, using secvtx or loose tags, etc.

tt Fraction Production Cross Section

Fraction of tt produced via gluon fusion to the total production

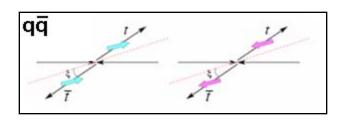
$$G_{f} = \frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = \frac{\frac{g}{g} \frac{t}{f} \frac{g}{g} \frac{t}{$$

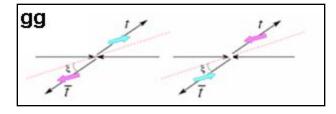
SM expectations

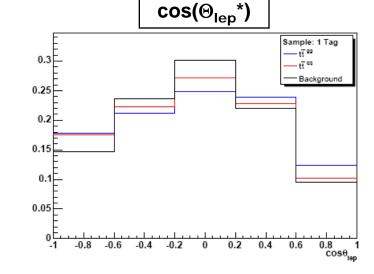

$$G_f = \frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.15 \pm 0.05, \quad \frac{\sigma(qq \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.85 \mp 0.05$$

- ⇒ With large errors due to parton density functions (PRD 68, 114014 & J. High Energy Phys. 0404, 068)
- ⇒ Processes with <u>different kinematic characteristics</u>.

Kinematic properties

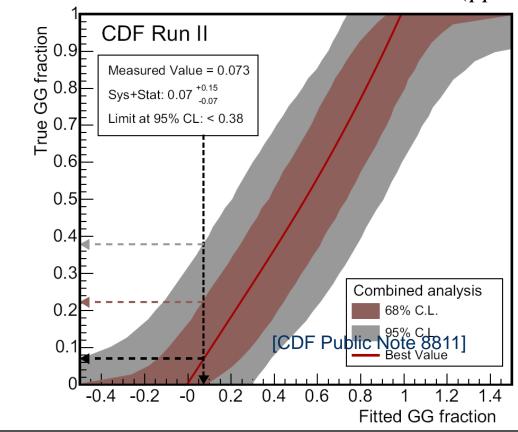

Production in tt rest frame depends only on:


- \Rightarrow β : the top velocity relative to c.
- \circ cos(θ *): angle between the top and the right incoming parton.



Decay includes spin correlations

- ⇒ Define off-diagonal basis (Phys. Lett. B 387,199 & Phys. Lett. B 411,173)
- Many discriminators: e.g. angle between lepton and off-dia axis in top r.f



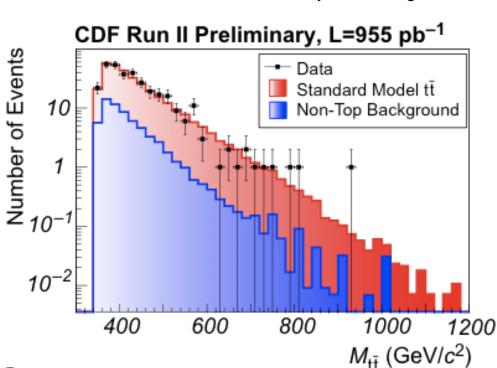
Top Production: Results

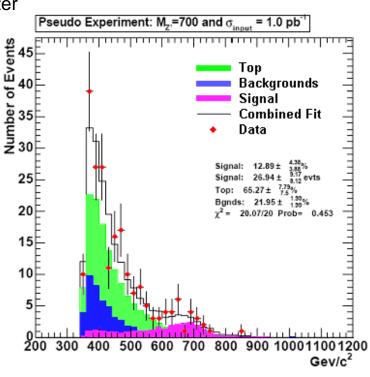
Results

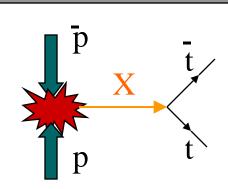
Find the ratio of the gg-produced to the total tt events $F_{GG} = \frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})}$

 $F_{GG} < 0.07 + 0.15 - 0.07$

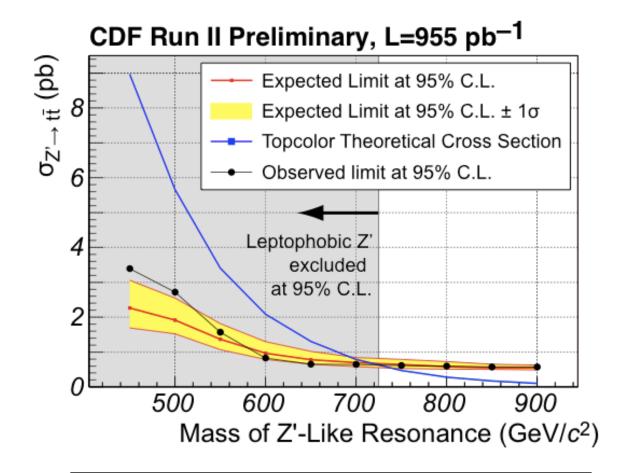
 $F_{GG} < 0.38 @ 95\% C.L.$


Search for tt resonances


Production


- top quark pairs can be produced by decays of heavy particles.
- Possible in Topcolor-assisted technicolor
 - Heavy particle (Z') couples strongly to 3rd generation,
 - Heavy particle does not couple to leptons

Reconstruct mass of tt system using kinematic fitter



Search for tt resonances:Results

Set limits on leptophobic Z' mass

M_{z′}>725 GeV @ 95% C.L.

`

Top Quark Properties

0

Production properties

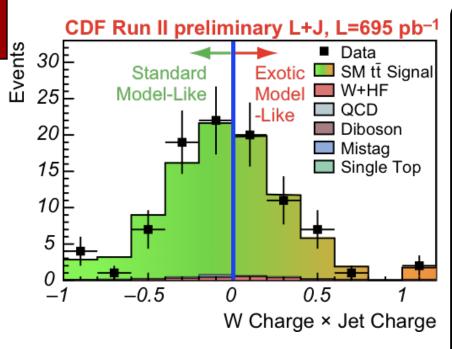
- Intrinsic properties
- Decay properties

Top Charge measurement

Standard Model

ightharpoonup predicts $Q_{top} = 2/3 e$

Exotic model:


- Observed "top" could be part of exotic quark doublet with charge (-1/3e,-4/3e)
- Predicts true top mass: 258 GeV/c2
- Assuming exotic model improves electroweak fits

See [D. Chang et al., Phys. Rev. D59 (1999) 091503] for details

Top Charge Measurement: distinguish Q_{top} between 2/3e and -4/3e

Top Charge: 2/3e or -4/3e?

Counting experiment:

- Both Lepton+Jets & Dilepton datasets
- 62 Standard Model-like events
- ⇒ 48 exotic model-like events

Statistical Treatment: Hypothesis Test

- •Null hypothesis: SM is correct
- Decide a priori: probability of incorrectly rejecting SM: α = 0.01
- If nature followed exotic model:
 81% of all measurements would return p-values below 0.01 under SM hypothesis
- Measured p-value: 0.35, i.e. largerthan α
- → data consistent with SM
- → exotic model excluded at 81% C.L.

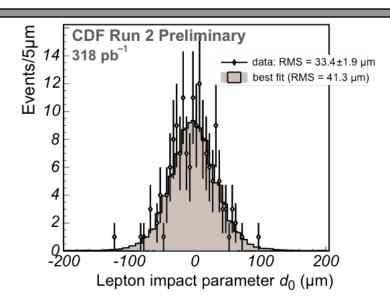
P-value: Probability that measurement results in the measured value or worse, given a hypothesis.

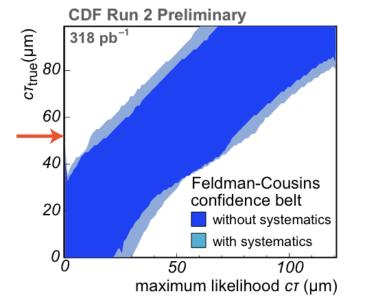
Top Lifetime

Top lifetime in the Standard Model

- ⇒ Expected lifetime: < 10⁻²⁴ s
- Constrained by unitarity of CKM matrix, but no direct measurements so far

First direct measurement at CDF


- ⇒ 318 pb⁻¹, Lepton+Jets sample
- Measure lepton impact parameter d0
- Calibrate impact parameter resolution in data with leptons from γ*/Z decays
- Create templates for signal & background


Results:

- Maximum likelihood: cτ = 0 μm
- Feldman-Cousins limit including systematics:

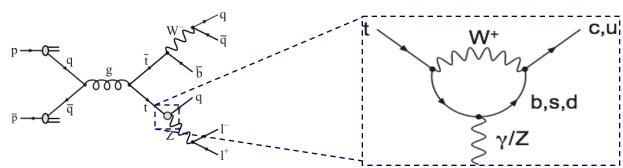
 $c\tau < 52.5 \mu m$ at 95%C.L.

[CDF Public Note 8104]

 \sim

Top Quark Properties

0


- Production properties
- Intrinsic properties

Decay properties

Flavor Changing Neutral Currents

No Flavor Changing Neutral Currents (FCNC) at tree level in the SM.

- FCNC are allowed at higher orders, but heavily suppressed
 - Suppression by GIM mechanism

 \supset Penguin matrix element depends on universal functions of single parameter $x_i = m_i^2/m_W^2$

$$\mathcal{M} \propto F(x_{\rm d}) V_{\rm cd}^* V_{\rm td} + F(x_{\rm s}) V_{\rm cs}^* V_{\rm ts} + F(x_{\rm b}) V_{\rm cb}^* V_{\rm tb},$$

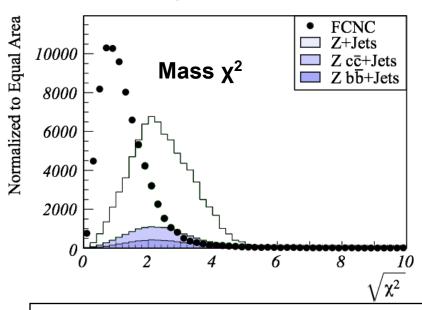
- ⇒Exact cancellation if masses of b, s, and d quarks were the same
- ⊃Top FCNC more strongly suppressed than bottom FCNC: BR(t → Zq) ≈ 10^{-14} Vs. BR(b→ sγ) ≈ 10^{-4}
- Suppression by CKM elements:

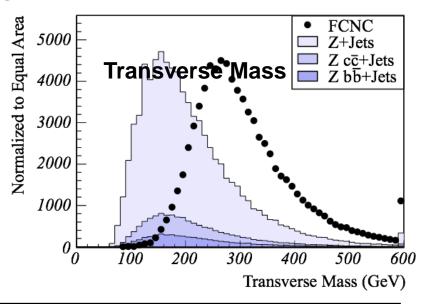
$$|V_{\rm cd}^*V_{\rm td}| \approx 0.002, \ |V_{\rm cs}^*V_{\rm ts}| \approx 0.04, \ |V_{\rm cb}^*V_{\rm tb}| \approx 0.04$$

Expected Signature : I⁺I⁻ + 4 jets

Beyond SM models predict branching ratios up to O(10⁻²)...

Kinematic Constraints: Optimization

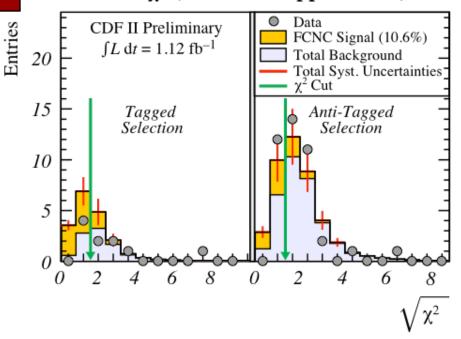

Sinematic χ2: combination of mass constraints – best discriminator


$$\chi^2 = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_{W,\text{rec}}}\right)^2 + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Wb}}\right)^2 + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Zq}}\right)^2$$

⇒ Transverse mass: FCNC top decays are more central than Z+jets

$$M_T = \sqrt{\left(\sum E_T
ight)^2 - \left(\sum \vec{p}_T
ight)^2}$$

Jet transverse energies: FCNC signal has four "hard" jets, background processes: jets have to come from gluon radiation



Optimization in (anti) tag sample: $X^2<1.35$ (<1.6), $M_T>200$ GeV

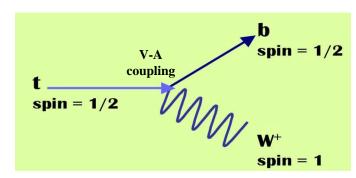
Top FCNC Search: Results

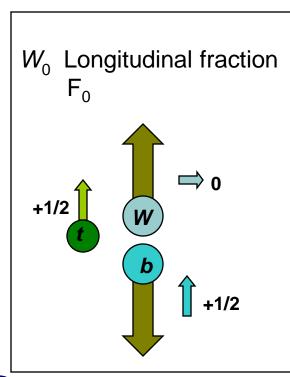
Mass χ^2 (95% C.L. Upper Limit)

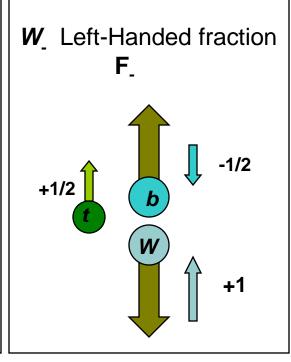
Mass χ^2 distributions for the two signal regions. The arrows indicate the optimal cuts on χ^2 . The expected FCNC signal at the measured upper limit is overlaid.

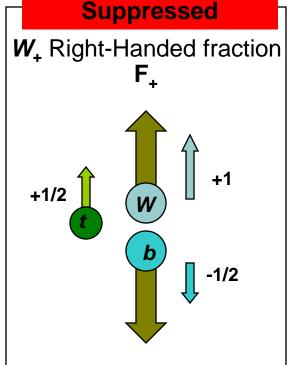
Unblinding after optimization: observed numbers events consistent with background

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	7.7 ± 1.8
Tagged Selection	4	$3.2 {\pm} 1.1$

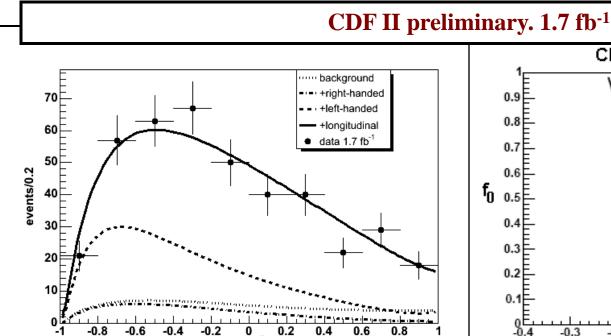

Feldman-Cousins upper limit for two signal regions including systematics:


$$B(t\rightarrow Zq) < 10.6\%$$
 @ 95% C.L.

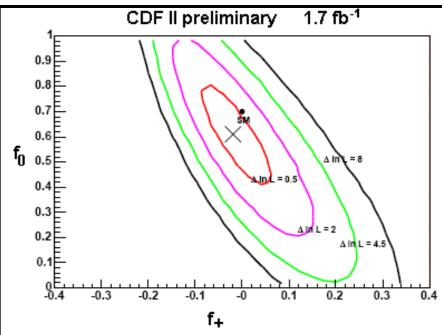

New world's best limit, improves previous limit (13.7% @ L3) by 25%


W helicity from t→Wb decays

- Examines the nature of the tWb vertex, probing the structure of weak interactions at energy scales near EWSB
- Stringent test of Standard Model and its V-A type of interaction.



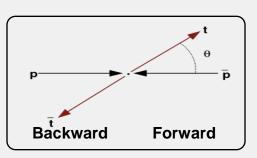
W helicity: Longitudinal Fraction


Template fits for f₀, f₊ Lepton+jet channel: 407 events, 1.7 fb⁻¹

$$f_0 = 0.57 \pm 0.11(stat) \pm 0.04(syst)$$

cose

$$f_{+} = -0.04 \pm 0.04(stat) \pm 0.03(syst)$$


$$f_0 = 0.61 \pm 0.20(stat) \pm 0.03(syst)$$

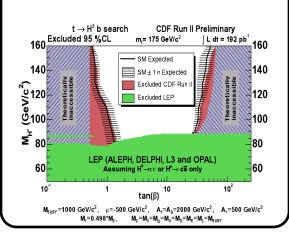
$$f_{+} = -0.02 \pm 0.08(stat) \pm 0.03(syst)$$

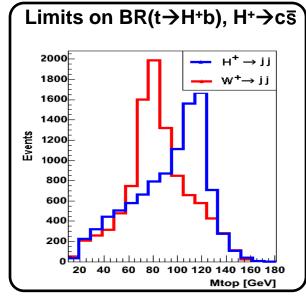
Top Properties: Other Measurements

Forward–Backward asymmetry

$$A_{fb} = \frac{N_{(-Q_{\ell})\cdot Cos\Theta>0} - N_{(-Q_{\ell})\cdot Cos\Theta<0}}{N_{(-Q_{\ell})\cdot Cos\Theta>0} + N_{(-Q_{\ell})\cdot Cos\Theta<0}}$$

Is the Top really the Standard Model Top?




Measurement of |Vtb|

R =
$$\frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$$
 = $\frac{\left|V_{tb}\right|^2}{\left|V_{td}\right|^2 + \left|V_{ts}\right|^2 + \left|V_{tb}\right|^2}$

0.8 Feldman-Cousins
Confidence Belt
0.6
0.4 0.5 1 1.5

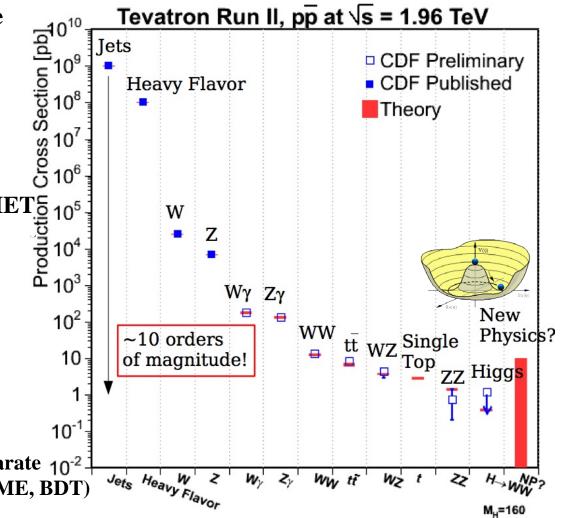
 $\overline{}$

Searching for the Higgs boson at CDF

0

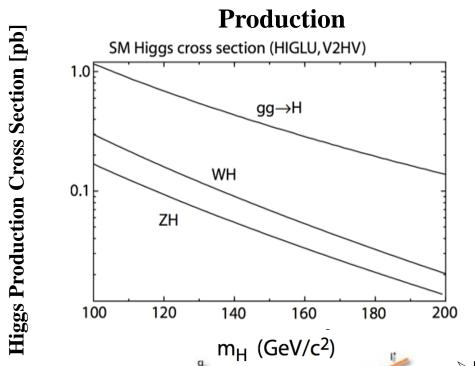
The Challenge

- **○**Higgs production is a very rare process at the Tevatron
- **⇒**Before doing anything $S:B \sim 1:10^{10}$
- **First step:**

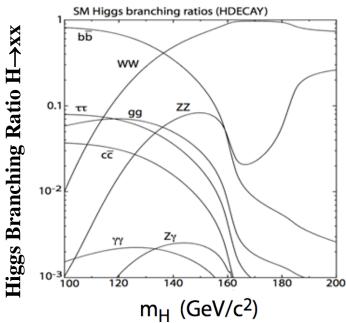

:B ~ 1:10

First step:

Trigger and ID clean leptons/MET 10⁵ 10⁵ 10⁴ 10³ 10³

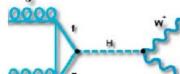

MET + **Jets triggers** Track + MET + Ecal τ -trigger

- **⊃**Second step:
 - -Efficient b-tagging
 - -Careful background estimates
 - -Advanced analysis tools to separate 10⁻² signal from background (NN, ME, BDT)



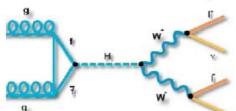
Other rare processes (dibosons, single top) are being measured at CDF and D0 and serve as excellent testing ground for new analysis techniques

Higgs Production and Decay



>Higgs goes mostly to b's

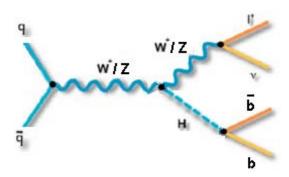
- Identification of b-jets (or τ's)
- > gg→H→bb̄ swamped by background
- detect associated W or Z: leptons, MET


Low mass Higgs: $(m_H < 135 \text{ GeV/c}^2)$

wIZ

High Mass Higgs:

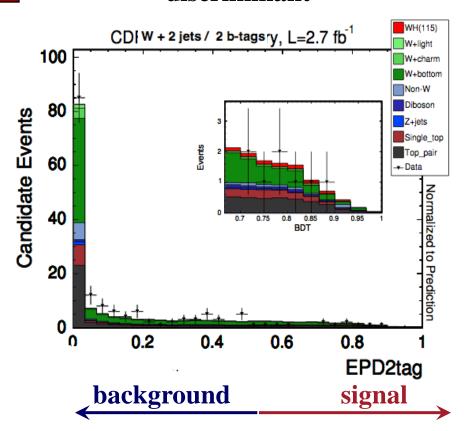
 $(m_H > 135 \text{ GeV/c}^2)$



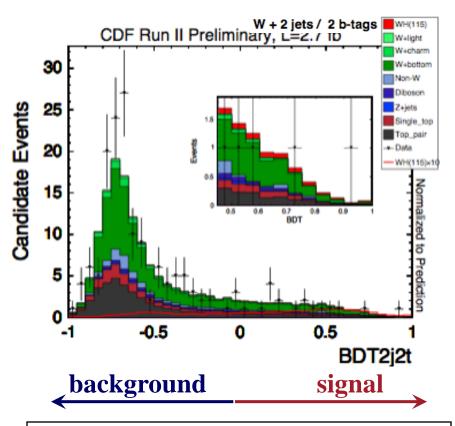
- >H→WW→IIbb̄
- **▶** backgrounds low enough to use gg->H
- > signature: leptons and MET

Jan 24th, 2008

$WH \rightarrow I \nu b b$


- Using multivariate techiques
 - Used in all CDF analyses
- Functions which transform multiple inputs into single discriminant, tuned for identifying a single process
 - ⇒ NN = Neural Net
 - ⇒ ME = Matrix Element
 - ⇒ BDT = Boosted Decision Trees

- Loose double tagging
- Lepton ID with isolated tracks/extended muons
- NN discriminator
- ME+BDT (LO+NLO)


$WH \rightarrow I \nu b b$

Matrix Element (ME) discriminant

ME approach good in capturing Leading Order discrimination

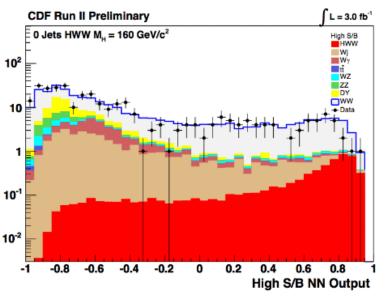
ME + Boosted Decision Trees (ME+BDT)

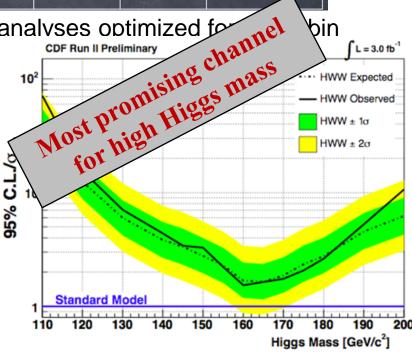
Add other kinematic event variables to ME in a BDT to capture Next to Leading Order effects

Summary of low-mass analyses

\bigcirc Observed (and expected) limits for $m_H = 115 \text{ GeV/c}^2$

	CDF
Channel	95% C.L. Limits
	σ ·BR/SM obs (exp)
WH→Ivbb (NN)	5.0 (5.8) 2.7fb ⁻¹
WH→Ivbb (ME+BDT)	5.7 (5.6) 2.7fb ⁻¹
WH→qqbb (ME)	37.0 (36.6) 2.0fb ⁻¹
ZH→IIbb (NN)	11.6 (11.8) 2.7fb ⁻¹
ZH→IIbb (ME)	14.2 (15.0) 2.7fb ⁻¹
VH→vv/(I)bb (NN)	7.9 (6.3) 2.7fb ⁻¹
$H \rightarrow \tau \tau$	30.5 (24.8) 2.2fb ⁻¹

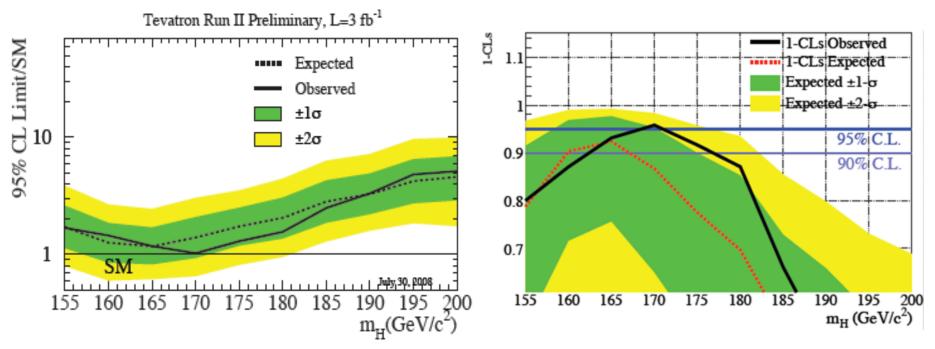



High Mass: H→WW

Background composition strongly depend on the jet- bin

# jets	H→WW events	Total Bkg events	% ww	% Drell- Yan	% ++	% fakes & conversions
0	8	540	52	12	0.2	30
1	5	230	32	31	11	16
2	4	130	12	22	54	8

⇒ Gain sensitivity by using three analyses optimized formel bin



Combine CDF and D0 's results

Use two different methods to verify accuracy

- Method 1 : CLs by D0
- Method 2 : Bayesian by CDF expected to be more conservative.

Results are consistent :

mH at 170 GeV ruled out at 95% CL

Chapter

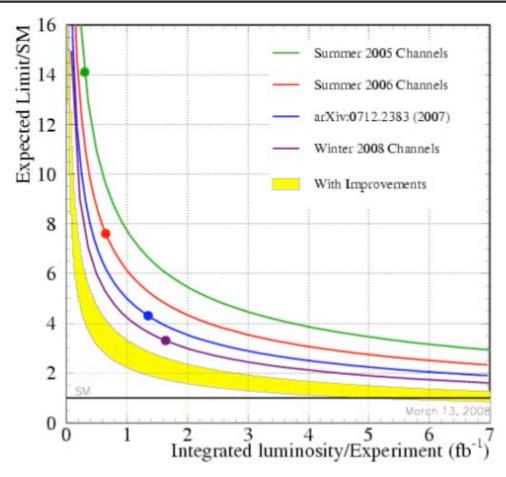
_____O ____

Summary

Summary

- CDF is seriously focused on exhaustive measurements of top properties and Higgs bosons.
- Many more analyses ongoing
 - ⇒ B(t→H+b), with H+ decaying to specific channels.
 - ⇒ Top Spin correlations, searches for t'→Wq

So far, no departure from SM expectations in the top sample


- Higgs searches, exciting times :
 - Starting to rule out high Higgs masses
 - Higgs analyses are very mature
 - Much more data on tape
- Uncertainties are beginning to shrink...

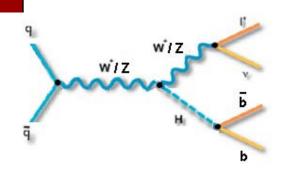
More and more we are putting the SM to the test!

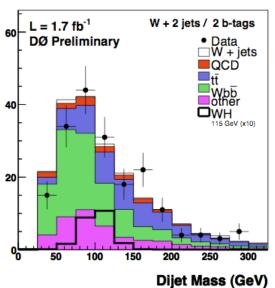
Jan 24th, 2008

Projections

⇒Details on each Higgs analysis is available at:

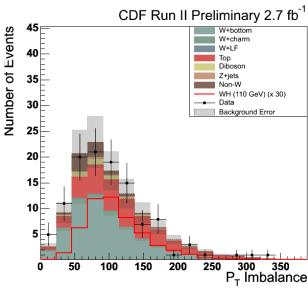
⇒CDF: http://www-cdf.fnal.gov/physics/new/hdg/hdg.html

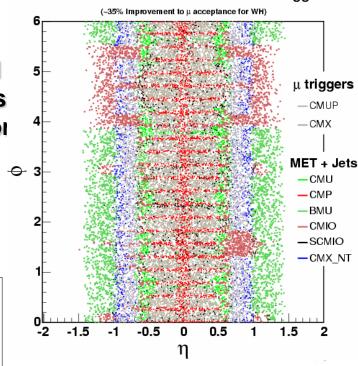

⇒D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

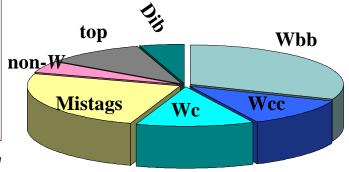

 \sim

Backup slides

$WH \rightarrow I \nu b b$

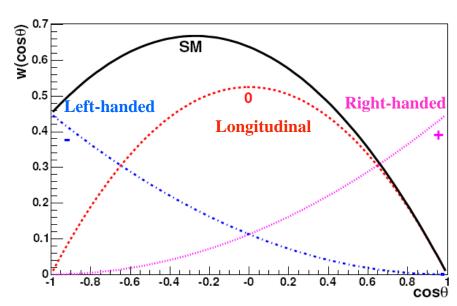



- ◆ 1 lepton+MET+ 2 b jets
- About 3-4 evts / 1fb⁻¹
- Most sensitive channel


- Highlights -

- Loose double tagging
- Lepton ID with isolated tracks/extended muons
- NN Jet Flavor Separator for single tag events
- NN discriminator
- ME+BDT (LO+NLO)

Muon events from the MET + Jets Trigger

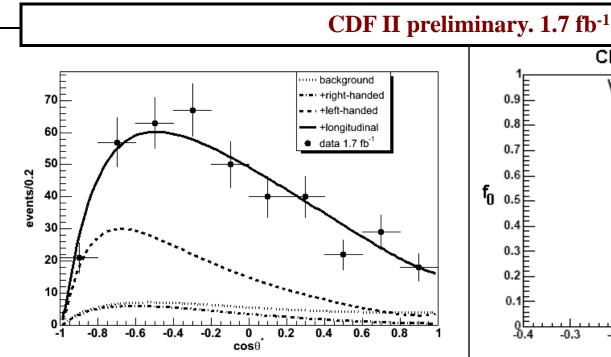


W helicity from t→Wb decays

lacktriangle In general, the $heta^*$ distribution of top decays in the W rest frame is

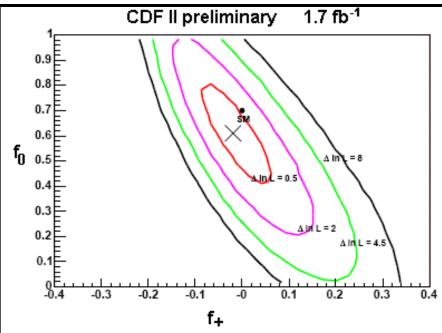
$$w(\cos\theta^*) = F_{-} \cdot \frac{3}{8} (1 - \cos\theta^*)^2 + F_{0} \cdot \frac{3}{4} (1 - \cos^2\theta^*) + F_{+} \cdot \frac{3}{8} (1 + \cos\theta^*)^2$$
where $F_{-} + F_{0} + F_{+} = 1$

⇒ In the Standard Model : $F_{-}=0.3$ $F_{0}=0.7$ $F_{+}\approx 0$ (exact when $m_{b}=0$)



- ⇒ The different W helicities result in different P_T spectrums
 - ⇒ left-handed: leptons are emitted opposite to W boson (softer lepton P_T)
 - longitudinal: leptons are emitted perpendicular to the W (harder lepton P_T)
 - ⇒ right-handed: leptons are emitted parallel to W boson (hardest lepton P_T)

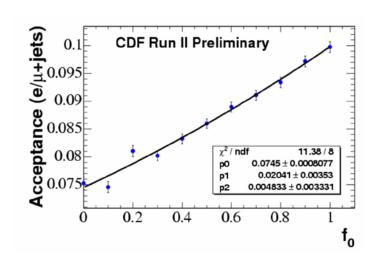
Jan 24th, 2008


W helicity: Longitudinal Fraction

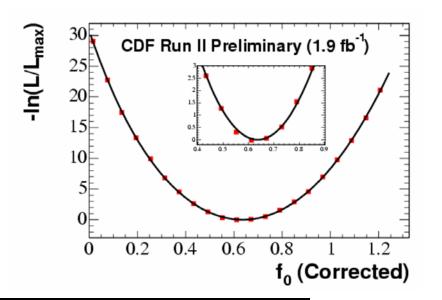
Template fits for f₀, f₊ Lepton+jet channel: 407 events, 1.7 fb⁻¹

$$f_0 = 0.57 \pm 0.11(stat) \pm 0.04(syst)$$

$$f_{+} = -0.04 \pm 0.04(stat) \pm 0.03(syst)$$


$$f_0 = 0.61 \pm 0.20(stat) \pm 0.03(syst)$$

$$f_{+} = -0.02 \pm 0.08(stat) \pm 0.03(syst)$$


W helicity: ME measurement

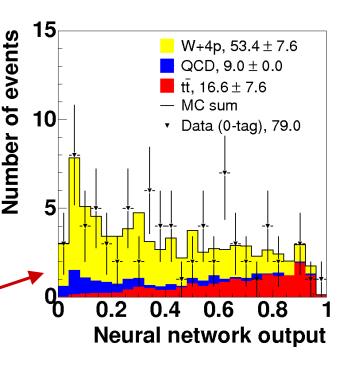
Template Probability:

- ightharpoonup Compute Probabilities per event ightharpoonup $P_{evt,i}(X; C_{s'}, f_0) = C_s P_{ttbar,i}(X; f_0) + (1 C_s) P_{W+jets,i}(X)$
 - Ptt(f₀,f₊) as expected from SM
 - ⊃ P_{W+iets}() from Vecbos
 - Create total event probability -
- \triangleright Evaluate L(f₀) for full set of events
 - Includes acceptance corrections

 $f_0 = 0.637 \pm 0.084 \pm 0.069$ for $m_T = 175$ GeV && $f_+ = 0$

Statistical limited. Working on obtain simultaneously f_0 and f_+

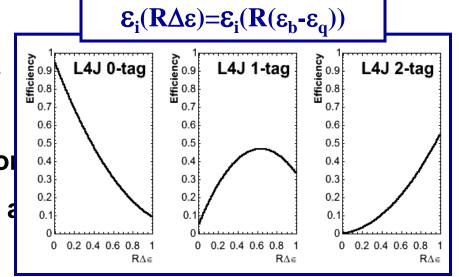
- Indirect measurement using the CKM matrix:
 - ➡ Elements |V_{ub}| and |V_{cb}| are measured from the decay of B mesons to be very small.
 - Assuming unitarity and only three generations |V_{tb}| is expected to be 0.998@90 %CL
- With top quarks at hand we can measure it directly:
 - we measure R, defined as


$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{|V_{tb}|^{2}}{|V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2}} \quad \text{where } q = \{d, s, b\}$$

- Use the ability to identify jets with a distinguished secondary vertex associated with the b parton.
 - The number of b-tagged jets depends strongly on R and ε_b
- We classify the ttbar sample based on the number of b-tagged jets
 - ⇒ The relative rates of events with 0/1/2 b-tags is very sensitive to R

- Use the Lepton+Jets and Dilepton samples.
 - ⇒ Total integrated luminosity of 162 pb⁻¹
- Lepton+Jets sample requires:
 - ⇒ Isolated lepton (e,μ) with $E_T>20$ GeV
 - ⇒ ME_T>20 GeV
 - at least 4 jets with E_T>15 GeV
- Classify both samples based on the number of b-tagged jets
- Estimate the background contributic ≥
 to each of the six sub-samples
 - MC and data driven
 - Background in the Lepton+Jet with
 0-tags obtained using NN techniques.

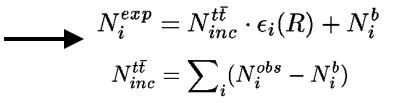
Dilepton sample requires :


- At least two leptons (ee, μμ, eμ) E_T>20 Ge
- ⇒ ME_T>20 GeV
- at least two jets with E_T>15 GeV.

□ In the Dilepton and Lepton+Jets samples analyze the relative number of events with different multiplicity of secondary vertexes, i.

$$N_i^{\exp} = N_{inc}^{t\bar{t}} \cdot \varepsilon_i(R) + N_i^b$$

We could assume the production cross section to estimating a compare different tag bins.

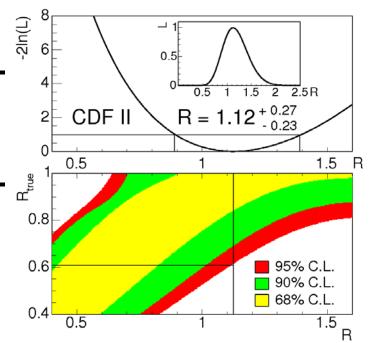

Instead, we take the different approach of using

$$N_{inc}^{t\bar{t}} = \sum_{i} N_{i}^{obs} - N_{i}^{b}$$

${\text{Lepton} + \text{Jets} (\text{L}+\text{J})}$) 0-tag	1-tag	2-tag
$\epsilon_i \ (R=1)$	0.45 ± 0.03	0.43 ± 0.02	0.12 ± 0.02
ANN background	62.4 ± 9.0	5.8 ± 5.2	$0.1^{+1.0}_{-0.1}$
a priori background		4.2 ± 0.7	0.2 ± 0.1
Total expected	80.4 ± 5.2	21.5 ± 4.1	5.0 ± 1.4
Observed	79	23	5
Dileptons (DIL)	0-tag	1-tag	2-tag
$\epsilon_i \ (R=1)$	0.47 ± 0.03	0.43 ± 0.02	0.10 ± 0.02
a priori background	2.0 ± 0.6	0.2 ± 0.1	< 0.01
Total expected	6.1 ± 0.4	4.0 ± 0.2	0.9 ± 0.2
Observed	5	4	2

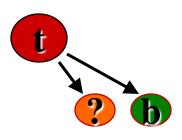
Obtain expected events as a function of R

Compare to observed and Maximize the likelihood


Measure R:

$$R = 1.12^{+0.21+0.17}_{-0.19-0.13}$$
 (stat + syst)

Set F-C lower limit:


R>0.61 at 95%CL

|Vtb| > 0.79 at 95%CL (assuming unitarity)

What the results of R implies?

- The R result is consistent with the SM.
- This means that the top decays to a b quark most of the time, as expected.

⇒But, is ? always a W+?

⇒Could **?** be sometimes an H⁺?

Charged Higgs bosons appear in the context of 2HDM's, like MSSM.

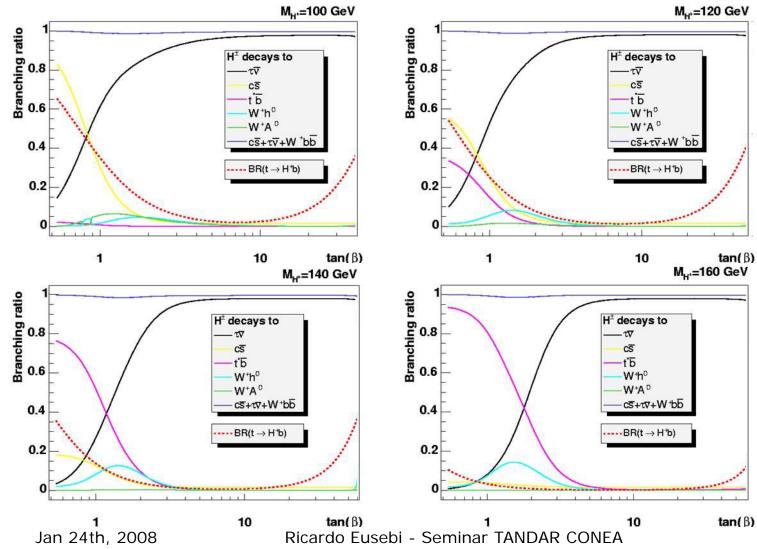
⇒ E.S.B → 5 Higgs bosons; 3 neutral (h⁰, H⁰, A⁰) and <u>2 charged (H[±])</u>

Myriad of new decay channels:

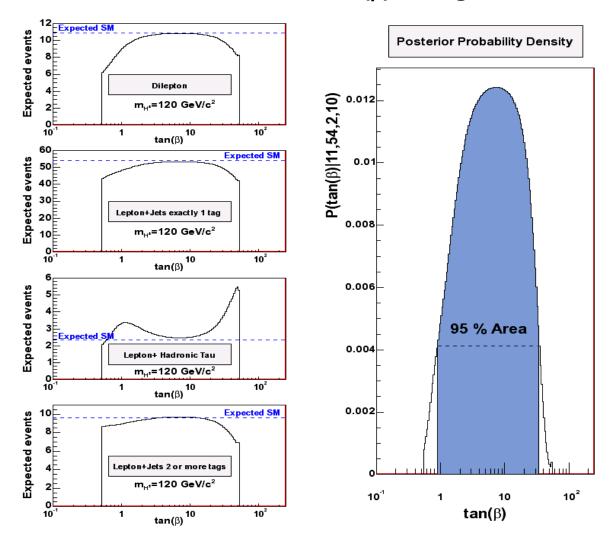
- \Rightarrow h⁰, H⁰ \rightarrow bb, $\tau\tau$, gg, W+W-, ZZ, cc
- \Rightarrow A \rightarrow bb, $\tau\tau$, gg, Zh⁰
- $\rightarrow H^+ \rightarrow t^*b$, $\tau + \nu$, cs, W+h⁰, W+A, etc

Assume H+ may decay to any of these

- → The presence of an H+ would affect the relative number of events in each top decay channel, according to its decay. For example:
 - \Rightarrow If $H+\rightarrow \tau \nu$, number of events in the **Lepton+Tau** sample would show an excess.
 - ⇒ If H+→cs, number of events in the Dilepton and Lepton+Jets would show a deficit.
- Top and Higgs BR's can be predicted by MSSM for specific benchmark parameters.



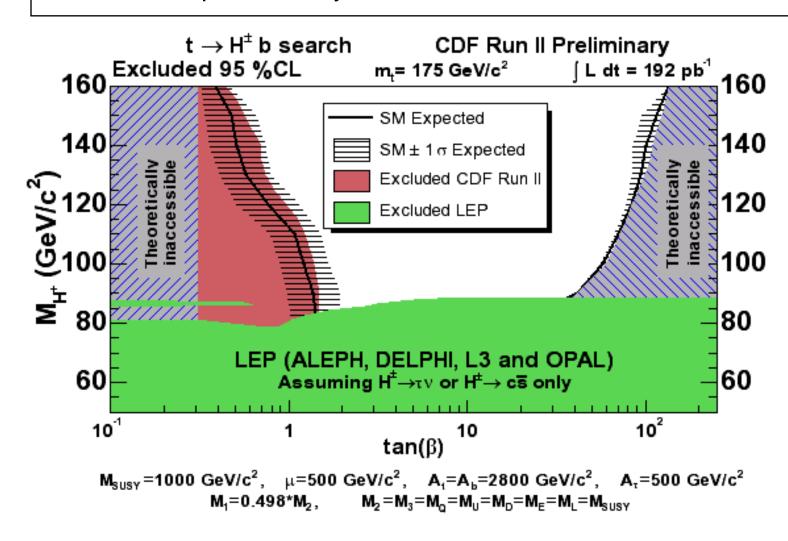
- ⇒ For each top quark we have 5 possible decay modes
 - t→Wb
 - ⇒ $t \rightarrow Hb \rightarrow t*bb \rightarrow Wbbb$ ⇒ $t \rightarrow Hb \rightarrow \tau vb$
- Use the Dilepton, Lepton+Jets (1 and 2 or more tags) and Lepton+TauH (generically called XSA)
- **○** The number of expected candidates N^{exp} is


$$N_{XSA}^{\rm exp} = N_{XSA}^{back} + \sigma \ \mathcal{E}_{tt,XSA} \ \int Ldt \longrightarrow {}^{\sim} 193 \ {\rm pb}^{-1}$$
 from XS meas.
$$\sigma^{\rm theo} = (6.7 \pm 0.7) {\rm pb}_{\rm (hep-ph~0303085)} \ \mathcal{E}_{tt,XSA} = \sum_{i,j=1}^5 B_i B_j \ \mathcal{E}_{i,j~XSA} \Big(wTop, wHiggs, m_{H^\pm}, m_{h^0} \Big)$$
 Branching fractions of each decay mode

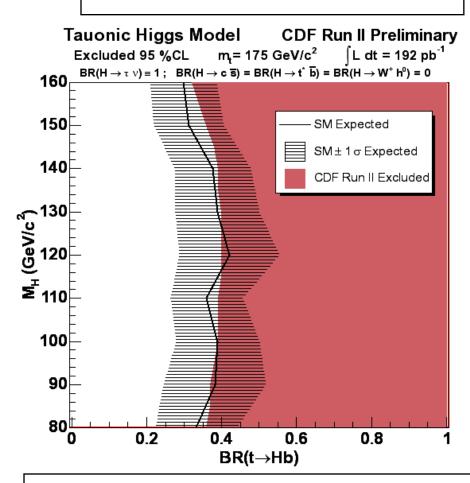
- Need to know the BR's to compute the efficiency
- **○** Given {BR's} compare Nobs to Nexp for each cross section measurement
 - Use a likelihood in the parameter of interest

- Using CPsuperH (hep-ph/0307373) to predict the BRs
 - **⇒** Full QCD, SUSY-EW and SUSY-QCD corrections included

Expected Events as a function of tan(β). Integrated luminosity 191 pb⁻¹


Jan 24th, 2008

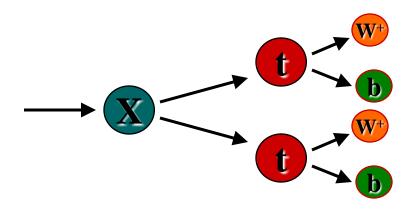
⇒ BR's predicted by MSSM in Minimal Stop Mixing scenario


⇒ BR's predicted by MSSM in another benchmark scenario

⇒ Assuming H+ \rightarrow τν only.

Worst case of all possible BR's combinations

Worst Case BR Combination Excluded 95 %CL m_t = 175 GeV/c² [L dt = 192 pb] **160** 150 Excluded CDF Run II 140 011 (GeV/c²) 110 ±± 110 100 90 $m_{h^0} = 70 \text{ GeV/c}^2$ 80 0.8 0.2 0.4 0.6 $BR(t \rightarrow H^{\dagger}b)$


BR(t→H+b)<0.4@95%CL for 80<mH<160 GeV

Jan 24th, 2008

BR(t→H+b)<0.85@95%CL for 80<mH<160 GeV

What about production?

- We know that, within errors,:
 - The top decays mostly to b
 - **⇒** The top decays mostly to W+
 - **⇒** The nature of the tWb vertex is what's expected.

Are some top pairs coming from a resonance?

What else?

- We know that:
 - Top is produced in ttbar pairs (and possible singly too)
 - The top decays mostly to b
 - **⇒** The top decays mostly to W+
 - The nature of the tWb vertex is what's expected.

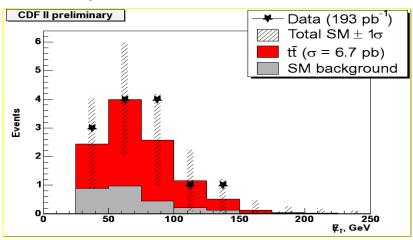
⇒ Is anything beyond SM in our top sample?

- Work in the Dilepton sample
- Choose a priori a set of variables with potential sensitivity to new physics

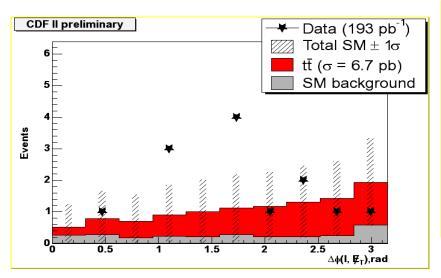
⇒ ME_T

⇒ Leading lepton P_T

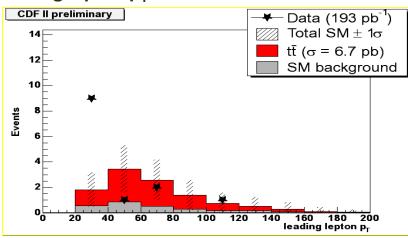
→ Angle(ME_T, Leading Lepton) → "Topness" (based on kinematical fit)

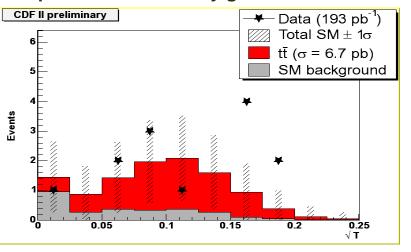

- Perform Kolmogorov-Smirnov consistency test between data and MC
- Select the subset of events with the most non-SM features
- Run 1 saw an excess of large ME_T and lepton P_T
 - PRL 77 3506 (1996) proposed that squarks around 300 GeV show better agreement to data
 - Expected sensitivity of current analysis for that model, given 13 events :

SUSY fraction	Chance to find 3σ evidence
50%	50%
30%	25%
10%	7 %


Jan 24th, 2008

SM Kinematic Test


Missing E_T


$\Delta \phi$ (leading lepton, met)

Leading lepton p_T

"topness" = ttbar decay goodness-of-fit

t->Zc: Signature and Backgrounds

Signature:

- Z → e+e-,µ+µ-76 GeV < M_{II} <106 GeV opposite charge.
- ⇒ 4 jets, with E_T>15 GeV
- Two separate signal regions: zero b-tags, and one or more b-tags.

Background:

- Z+Jets: dominant background for top FCNC search. Most difficult to estimate
- Standard model tt production→ small background
- Dibosons: WZ and ZZ diboson production → small background
- ⇒ W+Jets, WW: negligible

Diboson Production: WZ, ZZ

- Small background (similar in size to standard model tt production)
- Small cross section but real Z
- Need extra jets from gluon radiationZZ:
 Heavy flavor contribution from Z→bb decay
- Estimated from MC simulation