Few-nucleon systems:

a lab. for the nuclear interaction

Alejandro Kievsky (INFN - U. Pisa)

Luca Girlanda (INFN - U. Pisa) Laura Marcucci (INFN - U. Pisa) Sergio Rosati (INFN - U. Pisa) Michele Viviani (INFN - U. Pisa) Rocco Schiavilla (Old Dominion - Jlab)

Starting Point

• Non relativistic Quantum Mechanics

 $H\Psi = E\Psi$ H = T + V $V = \sum_{i < j} V(i, j) + \sum_{i < j < k} W(i, j, k)$

- Solution of the Schrödinger eq. (bound states)
 - Faddeev equations for A = 3
 - Faddeev-Yakubovsky equations for A = 4
 - Green Function Monte Carlo $A \leq 12$
 - No Core Shell Model $A \leq 12$
 - Hyperspherical Harmonics

The NN Potential

 $v(NN) = v^{EM}(NN) + v^{\pi}(NN) + v^{R}(NN)$

 V^{EM} is the electromagnetic part V^{π} is the one-pion exchange potential V^{R} is the shor range part and have a certain number of parameters (from 30 to 40) determined by fitting the NN data.

For example the AV18 potential is:

$$v(NN) = \sum_{p=1,18} v_p(r)O^p$$
 with

 $O^{p} = (1, \sigma_{1} \cdot \sigma_{2}, S_{12}, L \cdot S, L^{2}, L^{2}\sigma_{1} \cdot \sigma_{2}, (L \cdot S)^{2}) \otimes (1, \tau_{1} \cdot \tau_{2})$

NN potentials from CHPT

 $V^{\pi}(1,2) = f^{2}[Y_{\mu}(r)\sigma_{1} \cdot \sigma_{2} + T_{\mu}(r)S_{12}]$

_	E(MeV)	data	$N^{3}LO$	NNLO	NLO	AV18	CD Bonn
	0-290	2402 (np)	1.10	10.1	36.2	1.04	1.03
	0-290	$2057~(\mathrm{pp})$	1.50	35.4	80.1	1.30	1.10

Motivation

- Realistic NN potentials describe 2N data with $\chi^2 \approx 1$
- Realistic NN potentials describe 3N data with $\chi^2 >> 1$
- Realistic NN+3N potentials describe 3N data with $\chi^2 >> 1$
- Realistic NN+3N potentials describe 4N data with $\chi^2 >> 1$
- The main disagreements are found in polarization observables even at low energies

$$X_{ij} = t(r_{ij})(\sigma_i \cdot r_{ij})(\sigma_j \cdot r_{ij}) + y(r_{ij})\sigma_i \cdot \sigma_j$$

 $E, D \neq 0$ from chiral EFT

Experimental and GFMC energies

	method	GFMC	GFMC	GFMC	NCSM
nucleus	Exp.	AV18	AV18+UR	AV18+IL4	N3LO+N2LO
$^{2}{\rm H}(1^{+})$	-2.2245	-2.2245			
$^{3}\mathrm{H}(\frac{1}{2}^{+})$	-8.48	-7.61	-8.46	-8.44	-8.47
$^{3}\mathrm{He}(\frac{1}{2}^{+})$	-7.72	-6.87	-7.71	-7.69	-7.73
$^{4}\mathrm{He}(0^{+})$	-28.30	-24.07	-28.33	-28.35	-28.36
${}^{6}\mathrm{Li}(1^{+})$	-31.99	-26.9	-31.1	-32.0	-32.63
$^{7}\mathrm{Li}(\frac{3}{2}^{-})$	-39.24	-31.6	-37.5	-39.5	
$^{7}\mathrm{Li}(\frac{1}{2}^{-})$	-38.77	-31.1	-32.1	-39.0	

Topics

- Construction of A = 3, 4 bound states
- Construction of A = 3, 4 scattering states
- Production of benchmarks:
 a) bound states, b) scattering states
- Calculations of observables
- Theory vs experiment
- n-d, p-d, $N-{}^{3}\mathrm{H}$, $N-{}^{3}\mathrm{He}$
- capture reactions as $p + d \rightarrow^{3} \text{He} + \gamma$ or $n + d \rightarrow^{3} \text{H} + \gamma$

A = 3, 4 bound states

The A=3,4 wave function is written as

$$\Psi_3 = \sum_{i=1,3} \psi(\mathbf{x}_i, \mathbf{y}_i)$$

$$\Psi_4 = \sum_{i=1,12} \psi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$$

$$\psi(\mathbf{x}_i, \mathbf{y}_i) = \sum_{\alpha=1}^{N_c} \phi_\alpha(x_i, y_i) \mathcal{Y}_\alpha(i, j, k)$$
$$\psi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i) = \sum_{\alpha=1}^{N_c} \phi_\alpha(x_i, y_i, z_i) \mathcal{Y}_\alpha(i, j, k, m)$$

Jacobi Coordinates:

$$A = 3$$

$$\mathbf{x}_i = \mathbf{r}_i - \mathbf{r}_h$$

$$\mathbf{y}_i = \sqrt{\frac{4}{3}} \left(\frac{\mathbf{r}_j + \mathbf{r}_k}{2} - \mathbf{r}_i \right)$$

$$A = 4$$

$$\mathbf{x}_{i} = \mathbf{r}_{j} - \mathbf{r}_{k}$$
$$\mathbf{y}_{i} = \sqrt{\frac{4}{3}} \left(\frac{\mathbf{r}_{j} + \mathbf{r}_{k}}{2} - \mathbf{r}_{i}\right)$$
$$\mathbf{z}_{i} = \sqrt{\frac{3}{2}} \left(\frac{\mathbf{r}_{j} + \mathbf{r}_{k} + \mathbf{r}_{i}}{3} - \mathbf{r}_{m}\right)$$

Hyperspherical Variables:

 $x_{i} = \rho \cos \theta_{i}$ $y_{i} = \rho \sin \theta_{i}$ $[\rho, \Omega_{i}] = [\rho, \theta_{i}, \hat{x}_{i}, \hat{y}_{i}]$

 $\begin{aligned} x_i &= \rho \cos \theta_{1i} \\ y_i &= \rho \sin \theta_{1i} \cos \theta_{2i} \\ z_i &= \rho \sin \theta_{1i} \sin \theta_{2i} \\ [\rho, \Omega_i] &= [\rho, \theta_{1i}, \theta_{2i}, \hat{x}_i, \hat{y}_i, \hat{z}_i] \end{aligned}$

$$T = -\sum_{i=1}^{A} \frac{\hbar^2}{2m_i} \nabla_i^2 = -\frac{\hbar^2}{m} \sum_{i=1}^{N} \nabla_{x_i}^2 - \frac{\hbar^2}{2M} \nabla_{\mathbf{X}}^2$$
$$\sum_{i=1}^{N} \nabla_i^2 = \left(\frac{\partial^2}{\partial\rho^2} + \frac{3N-1}{\rho} \frac{\partial}{\partial\rho} + \frac{L_N^2(\Omega_N)}{\rho^2}\right)$$

The HH functions are:

 $L_{3}^{2}(\Omega)\mathcal{Y}_{[K]} = K(K+4)\mathcal{Y}_{[K]}$ $\mathcal{Y}_{[K]} = \mathcal{N}_{l_{1}l_{2}}^{n} {}^{(2)}P_{n}^{l_{1}l_{2}}(\cos 2\phi)[Y_{l_{1}}(x_{1})Y_{l_{2}}(x_{2})]_{LM}$ $L_{4}^{2}(\Omega)\mathcal{Y}_{[K]} = K(K+7)\mathcal{Y}_{[K]}$ $\mathcal{Y}_{[K]} = \mathcal{N}_{l_{1}l_{2}}^{n_{1}n_{2}} {}^{(3)}P_{n_{1}n_{2}}^{l_{1}l_{2}l_{3}}(\cos 2\phi)[Y_{l_{1}}(x_{1})Y_{l_{2}}(x_{2})Y_{l_{3}}(x_{3})]_{LM}$

HH basis

The A = 3 amplitudes are expanded in the HH basis

$$\phi_{\alpha}(x_{i}, y_{i}) = e^{-\beta\rho} \left[\sum_{mn} A_{mn}^{\alpha} \mathcal{L}_{m}^{(5)}(\rho) \,^{(2)} P_{n}^{l_{1\alpha}, l_{2\alpha}}(\theta_{i}) \right]$$
$$\phi_{\alpha}(x_{i}, y_{i}, z_{i}) = e^{-\beta\rho} \left[\sum_{mn_{1}n_{2}} A_{mn_{1}n_{2}}^{\alpha} \mathcal{L}_{m}^{(8)}(\rho) \,^{(3)} P_{n_{1}n_{2}}^{l_{1\alpha}, l_{2\alpha}, l_{3\alpha}}(\theta_{1i}, \theta_{2i}) \right]$$

The A=3,4 HH basis elements are

K

$$\begin{aligned} |\alpha m[K] > &= \mathcal{L}_{m}^{(5)}(\rho) e^{-\beta \rho} \sum_{i} {}^{(2)} P_{n}^{l_{1\alpha}, l_{2\alpha}}(\theta_{i}) \mathcal{Y}_{\alpha}(i, j, k) \\ |\alpha m[K] > &= \mathcal{L}_{m}^{(8)}(\rho) e^{-\beta \rho} \sum_{i} {}^{(3)} P_{n_{1}n_{2}}^{l_{1\alpha}, l_{2\alpha}, l_{3\alpha}}(\theta_{1i}, \theta_{2i}) \mathcal{Y}_{\alpha}(i, j, k, m) \\ &= l_{1\alpha} + l_{2\alpha} + 2n \qquad K = l_{1\alpha} + l_{2\alpha} + l_{3\alpha} + 2n_{1} + 2n_{2} \end{aligned}$$

A = 3,4 basis elements

The A=3,4 bound state wave functions result

$$\Psi_{A=3,4} = \sum_{\alpha,m,[K]} A^{\alpha}_{m[K]} |\alpha m [K] >$$

 $|\alpha m[K]| >$ is a complete antisymmetric basis element.

The coefficients $A^{\alpha}_{m[K]}$ are obtained from the generalized eigenvalue problem:

$$\sum_{\alpha,m,[K]} A^{\alpha}_{m[K]} < \alpha' \, m' \, [K'] | H - E | \alpha \, m \, [K] >= 0$$

The HH basis can be defined in configuration or momentum space:

$$<
ho, \Omega | \alpha m [K] > = \mathcal{L}_m^{(A)}(\rho) e^{-\beta \rho} B^{\alpha}_{[K]}(\Omega)$$

$$< Q, \Omega_p | \alpha m [K] > = \mathcal{F}_{Km}^{(A)}(Q) B_{[K]}^{\alpha}(\Omega_q)$$

with

$$\mathcal{F}_{KM}^{(A)}(Q) = (-i)^K \int_0^\infty d\rho \frac{\rho^{3N-1}}{(Q\rho)^{3N/2-1}} J_{K+3N/2-1}(Q\rho) \mathcal{L}^{(A)}(\rho)$$

The T-matrix elements $\langle \alpha' m' [K'] | T | \alpha m [K] \rangle$ are analytical The V-matrix elements $\langle \alpha' m' [K'] | V | \alpha m [K] \rangle$ can be calculated in configuration or momentum space as convenience.

Potential	Method	$B(^{3}\mathrm{H})$	$B(^{4}\mathrm{He})$
AV18	HH	7.624	24.22
	FE/FY Bochum	7.621	24.23
	FE/FY Lisbon	7.621	24.24
CDBonn	HH	7.998	26.13
	FE/FY Lisbon	7.998	26.11
	NCSM	7.99(1)	
N3LO-Idaho	HH	7.854	25.38
	FE/FY Lisbon	7.854	25.38
	NCSM	7.852(5)	25.39(1)
AV18/UIX	HH	8.479	28.47
	FE/FY Bochum	8.476	28.53
	GFMC	8.46(1)	28.33(2)
CDBonn/TM	HH	8.474	29.00
	FE/FY Bochum	8.482	29.09
N3LO-Idaho/N2LO	HH	8.474	28.37
	NCSM	8.473(5)	28.34(2)

³ H	В	$\langle T \rangle$	r_p	r_n	$P_{S'}$	P_P	P_D	$P_{T3/2}$
AV18	7.624	46.727	1.653	1.824	1.293	0.066	8.510	0.0025
CDBonn	7.998	37.630	1.618	1.771	1.310	0.047	7.018	0.0049
N3LO-I	7.854	34.555	1.655	1.808	1.365	0.037	6.312	0.0009
AV18/UIX	8.479	51.275	1.582	1.732	1.054	0.135	9.301	0.0025
CDBonn/TM	8.474	39.364	1.580	1.722	1.202	0.101	6.971	0.0049
N3LO-I/N2LO	8.474	36.482	1.611	1.752	1.242	0.121	6.815	0.0009
Exp.	8.482		1.60					
³ He	В	$\langle T \rangle$	r_p	r_n	$P_{S'}$	P_P	P_D	$P_{T3/2}$
AV18/UIX	7.750	50.211	1.771	1.602	1.242	0.132	9.248	0.0075
CDBonn/TM	7.720	38.495	1.767	1.597	1.409	0.099	6.966	0.0106
N3LO-I/N2LO	7.733	35.745	1.794	1.628	1.450	0.119	6.818	0.0057
Exp.	7.718		1.77					
$^{4}\mathrm{He}$	В	$\langle T \rangle$	r_p	r_n	P_P	P_D	P_{T1}	P_{T2}
AV18/UIX	28.46	113.30	1.430	1.425	0.732	16.03	0.0025	0.0050
CDBonn/TM	29.00	84.56	1.396	1.391	0.454	9.94	0.0021	0.0105
N3LO-I/N2LO	28.36	74.93	1.476	1.471	0.608	10.79	0.0028	0.0020
Exp.	28.30		1.47					

A = 3, 4 scattering states

The A=3,4 scattering wave function is written as

$$\Psi = \Psi_C + \Psi_A$$

The internal part is

$$\Psi_C^{A=3} = \sum_{i=1,3} \psi(\mathbf{x}_i, \mathbf{y}_i) , \qquad \Psi_C^{A=4} = \sum_{i=1,12} \psi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$$

The *i*-amplitude has total JJ_z and can be expanded in the HH basis.

$$\Psi_{C}(A = 3, 4) = \sum_{\alpha, m, [K]} A^{\alpha}_{m[K]} |\alpha m [K] >$$

The second term, Ψ_A describes the asymptotic motion of a bound state relative to the incident nucleon.

Asymptotic state

 Ψ_A can be written as a sum of *i* amplitudes with the generic one having the form

 $\begin{aligned} \Omega_{LSJ}^{\lambda}(\mathbf{x}_{i},\mathbf{y}_{i}) &= \mathcal{R}_{L}^{\lambda}(y_{i}) \left\{ [\phi_{d}(\mathbf{x}_{i})s^{i}]_{S}Y_{L}(\hat{y}_{i}) \right\}_{JJ_{z}} [t_{d}^{jk}t^{i}]_{TT_{z}} \\ \Omega_{LSJ}^{\lambda}(\mathbf{x}_{i},\mathbf{y}_{i},\mathbf{z}_{i}) &= \mathcal{R}_{L}^{\lambda}(z_{i}) \left\{ [\phi_{3}(\mathbf{x}_{i},\mathbf{y}_{i})s^{m}]_{S}Y_{L}(\hat{z}_{i}) \right\}_{JJ_{z}} [t_{3}^{ijk}t^{m}]_{TT_{z}} \end{aligned}$

The functions \mathcal{R}^{λ} are related to the regular or irregular Coulomb (spherical Bessel) functions. The functions Ω^{λ} can be combined to form a general asymptotic state ${}^{(2S+1)}L_J$

$$\Omega_{LSJ}^{+} = \Omega_{LSJ}^{0} + \sum_{L'S'} {}^J \mathcal{S}_{LL'}^{SS'} \Omega_{L'S'J}^{1}$$

The Kohn Variational Principle

The A = 3, 4 scattering w.f. for an incident state with relative angular momentum L, spin S and total angular momentum J has the form

$$\Psi_{LSJ}^{+} = \sum_{\alpha,m,[K]} A_{m[K]}^{\alpha} |\alpha m[K]\rangle + \Omega_{LSJ}^{0} + \sum_{L'S'} {}^{J} \mathcal{S}_{LL'}^{SS'} \Omega_{L'S'J}^{1}$$

A variational estimate of the trial parameters $A^{\alpha}_{m[K]}$, ${}^{J}S^{SS'}_{LL'}$ can be obtained using the Kohn Variational Principle

$$[{}^{J}\mathcal{S}_{LL'}^{SS'}] = {}^{J}\mathcal{S}_{LL'}^{SS'} - i\langle\Psi_{LSJ}^{-}|H - E|\Psi_{L'S'J}^{+}\rangle$$

Calculation of Observables

The observables can be calculated from the transition matrix M decomposed as a sum of the Coulomb plus a nuclear term

$$M_{\nu\nu'}^{SS'}(\theta) = f_c(\theta)\delta_{SS'}\delta_{\nu\nu'} + \frac{\sqrt{4\pi}}{k}\sum_{L,L',J}\sqrt{2L+1}(L0S\nu|J\nu)$$
$$\times (L'M'S'\nu'|J\nu)\exp[i(\sigma_L + \sigma_{L'} - 2\sigma_0)]^{J}T_{LL'}^{SS'}Y_{L'M'}(\theta, 0)$$

$$\sigma = \frac{tr\{MM^{\dagger}\}}{6} \qquad \qquad \sigma = \frac{tr\{MM^{\dagger}\}}{4}$$

$$A_y = \frac{tr\{M\sigma_yM^{\dagger}\}}{6} \qquad \qquad A_{y0} = \frac{tr\{M\sigma_yM^{\dagger}\}}{4}$$

$$iT_{11} = \frac{tr\{MS_yM^{\dagger}\}}{6} \qquad \qquad A_{0y} = \frac{tr\{MS_yM^{\dagger}\}}{4}$$

The scattering lengths are: ${}^{(2J+1)}a_{NY} = -\lim_{q\to 0} \mathcal{R}^J_{0J,0J}$

Potential Model	$^{2}a_{nd}$ [fm]	$^4a_{nd}[fm]$
AV14 HH	1.189	6.379
AV14 FE Los Alamos	1.204	6.380
AV18 HH	1.258	6.345
AV18 FE Bochum	1.248	6.346
AV18 [*] PHH	1.275	6.325
$AV18^*$ FE Bochum	1.263	6.326
N3LO-Idaho HH	1.100	6.342
AV14/TM HH	0.586	6.371
AV18/UIX HH	0.590	6.343
AV18/UIX FE Bochum	0.578	6.347
$AV18^*/UIX HH$	0.610	6.323
$AV18^*/UIX FE$ Bochum	0.597	6.326
N3LO-Idaho/N2LO HH	0.675	6.342
Exp.	$0.65 {\pm} 0.04$	$6.35 {\pm} 0.02$
Exp.	$0.645 \pm 0.003 \pm 0.007$	

Table 1: The *nd* doublet and quartet scattering lengths ${}^{2}a_{nd}$, ${}^{4}a_{nd}$

Potential Model	$^2a_{pd}$	$^4a_{pd}$	$^{2}a_{pd}(T=1/2)$	${}^4a_{pd}(T=1/2)$
AV14 HH	0.937	13.773	0.941	13.773
AV14 FE Los Alamos			0.965	13.764
AV18 HH	1.134	13.662	1.150	13.662
AV18 [*] HH	1.185	13.588	1.198	13.589
N3LO-Idaho HH	0.876	13.646	0.866	13.646
AV18/UIX PHH	-0.089	13.662	-0.074	13.663
AV18*/UIX PHH	-0.035	13.588	-0.019	13.590
N3LO-Idaho/N2LO HH	0.072	13.647	0.082	13.647

Table 2: The *pd* doublet and quartet scattering lengths ${}^{2}a_{pd}$, ${}^{4}a_{pd}$

Potential Model	$^{1}a_{n^{3}\mathrm{H}}$	${}^{3}a_{n^{3}\mathrm{H}}$	$^{1}a_{p^{3}\mathrm{He}}$	$^{3}a_{p^{3}\mathrm{He}}$
AV18 HH	4.29	3.73	12.9	10.0
AV18 FY	4.27	3.71		
AV18 FY	4.28	3.71		
N3LO-I HH	4.20	3.67		
N3LO-I FY	4.23	3.67		
AV18/UIX HH	4.10	3.61	11.5	9.13
AV18/UIX FY	4.04	3.60		
N3LO-I/N2LO HH	3.99	3.54		
Exp.	4.98 ± 0.29	3.13 ± 0.11	10.8 ± 2.6	8.1 ± 0.5
	4.45 ± 0.10	3.32 ± 0.02		10.2 ± 1.5

Table 3: The n^3 H, p^3 He singlet and triplet scattering lengths ${}^1a_{n^3\text{H}}$, ${}^3a_{n^3\text{H}}$, ${}^1a_{p^3\text{He}}$, ${}^3a_{p^3\text{He}}$

The experimental quantities are:

$$\sigma_T = \pi(|a_s|^2 + 3|a_t|^2),$$
$$a_c = \frac{1}{4}a_s + \frac{3}{4}a_t$$

Model	$\sigma_T(\mathbf{b})$	$a_c(\mathrm{fm})$	$a_s(\mathrm{fm})$	$a_t(\mathrm{fm})$
AV14+UR	1.74	3.71	4.10	3.58
AV18+UR	1.73	3.71	4.08	3.58
Expt.	1.70 ± 0.03	3.82 ± 0.07		
		3.59 ± 0.02	4.97 ± 0.29	3.12 ± 0.11
		3.607 ± 0.02	4.43 ± 0.12	3.30 ± 0.01

	K_1	K_2	K_3	K_4	K_5	K_6	K_7	η	$\delta~({ m deg})$
	21							1.00032	10.649
	41							1.00107	11.882
	61							1.00146	12.136
-	61	21						1.00131	12.897
	61	31						1.00134	13.020
	61	37						1.00136	13.055
•	61	37	21					1.00049	15.923
	61	37	31					1.00048	16.105
	61	37	35					1.00048	16.132
•	61	37	35	21				1.00040	16.646
	61	37	35	31				1.00040	16.794
-	61	37	35	31	19			1.00000	17.191
•	61	37	35	31	19	11	11	1.00000	16.219

Convergence of 0^- inelasticity parameter and phase-shift at $E_p = 4.05$ MeV for $p - {}^{3}$ He scattering. The S-matrix is $S = \eta \exp(2i\delta)$. The potential is AV18.

TUNL data for $p - {}^{3}$ He elastic differential cross sections are compared to AV18 (dashed lines) and AV18/UIX (solid lines)

The measured $p - {}^{3}$ He proton analyzing power. The solid circles are the data from TUNL, open circles from Madison. Calculations are for the AV18 (dashed lines) and AV18/UIX (solid lines)

Conclusions

- Few-nucleon systems are "theoretical laboratories" in which we can test the nuclear interaction
- Benchmarks are used to establish methods:
- A=3,4 bound states
- N-d scattering and $n {}^{3}$ H scattering
- Detailed wave functions have been constructed using
- the HH basis for bound and scattering states in A = 3, 4
- The HH basis can be used in CS or in MS
- In the low energy sector several observables are well described
- Extension of the HH technique to A > 4