Las celdas de combustible: una forma eficiente y limpia de generación de energía

Dr. Diego G. Lamas

Centro de Investigaciones en Sólidos (CINSO), CITEFA-CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Pcia. de Buenos Aires.

E-mail: dlamas@citefa.gov.ar

¿Qué es el CINSO?

CINSO: Centro de Investigaciones en Sólidos

Depende de CONICET y de CITEFA

Sensores de gases y nariz electrónica Dra. N.E. Walsöe de Reca

Directora: Dra. N.E. Walsöe de Reca (walsoe@citefa.gov.ar) Celdas de combustible de óxido sólido Dr. Diego G. Lamas (dlamas@citefa.gov.ar)

Detectores de infrarrojo Dr. Horacio Cánepa (canepa@citefa.gov.ar)

Nanomateriales
Dr. Rodolfo Fuentes
(rfuentes@citefa.gov.ar)

Equipo de trabajo:

- Ing. Paula Abdala*
- Lic. Leandro Acuña*
- Dr. Martín Bellino
- An. Prog. Marcelo Cabezas
- Dr. Jorge Casanova
- Lic. Ismael Fábregas*
- Sr. Alejandro Fernández

- Dr. Rodolfo Fuentes
- Dr. Diego Lamas
- Dra. Susana Larrondo
- Lic. Fernando Muñoz*
- Dr. Joaquín Sacanell
- Dra. N.E. Walsöe de Reca
- Ing. Genoveva Zimicz*

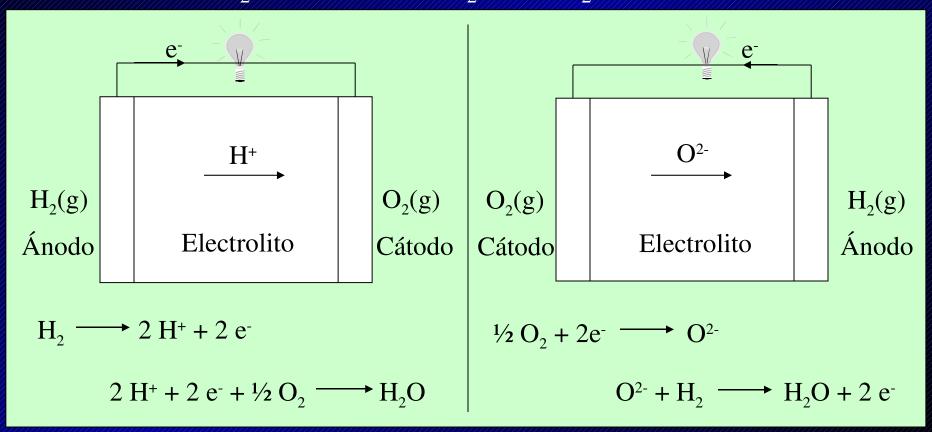
Colaboraciones más importantes:

- Comisión Nacional de Energía Atómica, Argentina: Centro Atómico Constituyentes y Centro Atómico Bariloche
- Instituto de Física, Universidade de São Paulo, Brasil
- Universidade Federal de Mato Grosso, Brasil
- Universidad de La Laguna, España
- Universidad del País Vasco, España

Introducción

- Breve discusión sobre la situación energética actual
- Generalidades sobre las celdas de combustible
- Estado del arte en el área de celdas de combustible de óxido sólido (SOFCs)
- Materiales para SOFCs de temperatura intermedia (IT-SOFCs)

Generación de energía - Situación actual


Las formas convencionales de generación de energía han llevado a problemas graves para la humanidad:

- Calentamiento global
- Contaminación ambiental (gases tóxicos, ruido, etc.)
- Crisis energética
- Distribución inadecuada (o injusta) de la energía
- Escasez de combustibles

En consecuencia, debemos buscar nuevas formas de generación de energía que sean más amigables con el medio ambiente y de alta eficiencia. Las **celdas de combustible**, en especial las de óxido sólido, son una importante alternativa.

¿Qué son las celdas de combustible?

Son dispositivos electroquímicos que permiten la conversión de la energía de una reacción química en energía eléctrica. En el caso más sencillo, la reacción que se aprovecha es la de formación de H_2O a partir de $H_2(g)$ y $O_2(g)$.

Conductor iónico por H+

Conductor iónico por O²-

Ventajas de las celdas de combustible

- No tienen las limitaciones de las máquinas térmicas, de modo que teóricamente pueden alcanzar eficiencias cercanas al 95%. En la práctica se han obtenido eficiencias de hasta el 65%.
- No se emiten gases tóxicos y, si se utiliza hidrógeno como combustible, puede evitarse completamente la generación de gases de efecto invernadero.
- No tienen partes móviles, por lo que no producen ruidos.

¿Por qué todavía no se usan? El costo de esta tecnología es actualmente muy superior a las formas convencionales de generación de energía.

Celdas de combustible vs. pilas convencionales

Ambas tienen un principio similar: generan energía eléctrica mediante un sistema electroquímico que no tiene las limitaciones termodinámicas de las máquinas térmicas y por ello tienen alta eficiencia.

- Las pilas convencionales son **sistemas cerrados**: los reactivos están en la propia pila y no es necesario contacto con el exterior. El problema de estos sistemas es que se agotan una vez consumidos los reactivos.
- Las celdas de combustible son **sistemas abiertos**: no se agotan mientras se provean los reactivos desde el exterior. Por ello tienen largas vidas útiles, sólo relacionados con problemas de degradación de los materiales empleados.

Clasificación de las celdas de combustible

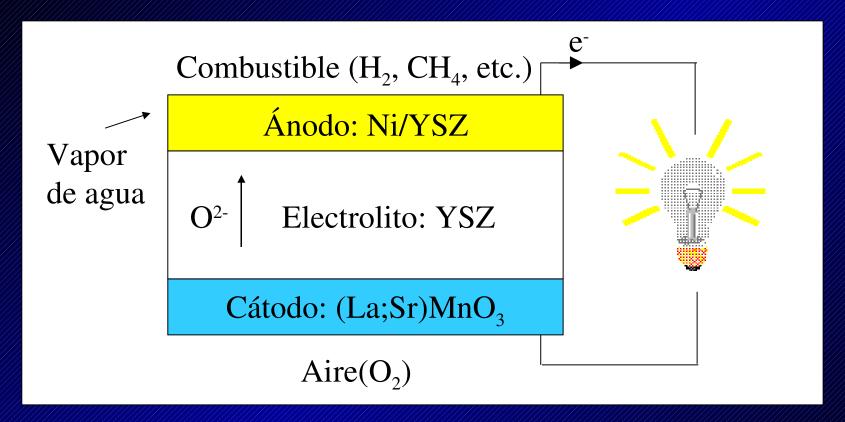
Tipos de celdas

PEMFC: Celdas de membrana de intercambio protónico

PAFC: Celdas de ácido fosfórico

MCFC: Celdas de carbonato fundido

SOFC: Celdas de óxido sólido


Celda	Temperatura	Ión móvil	Operación
PEMFC	80°C	LT+	Reformado externo (CO < 10 ppm)
PAFC	200°C	<u>H</u> it	Reformado externo (CO < 5%)
MCFC	650°C	$(CO_3)^{2-}$	Reformado interno
SOFC	500-1000°C	O^{2-}	Reformado interno

Aplicaciones más importantes

- Energía para la industria aeroespacial (ya fueron usadas en la misiones Gemini y Apollo)
- Transporte
- Energía domiciliaria
- Plantas de alta potencia
- Baterías para computadoras portátiles y dispositivos de baja potencia
- Generadores de energía en regiones alejadas de las redes de distribución

El tipo de celda a utilizar depende de la aplicación. En general, se propone las PEMFCs para transporte y las SOFCs para plantas de alta potencia.

Celdas de combustible de óxido sólido (SOFCs)

- Tienen alta eficiencia (60-65%)
- No necesitan catalizadores de metales nobles
- No se degradan con CO y tienen alta tolerancia al S
- Gran flexibilidad en la elección del combustible: pueden operar con hidrocarburos (por ejemplo CH₄)

Conceptos generales

- Las celdas de combustible de óxido sólido (SOFCs) pueden operar en forma directa con hidrocarburos (en especial, CH₄). No es necesario un reformado externo, sino que el mismo se produce en el propio ánodo de la celda en presencia de vapor de agua, gracias al empleo de catalizadores de níquel ("reformado interno").
- La mayor dificultad de las SOFCs convencionales es su alta temperatura de operación. Por ello, actualmente se investigan nuevos materiales para electrolito y electrodo adecuados para operación a temperaturas intermedias. En el caso del ánodo, es necesario desarrollar nuevos conceptos que reemplacen al reformado interno.
- Un importante objetivo a nivel mundial es el desarrollo de ánodos adecuados para operación con gas natural a temperaturas intermedias.

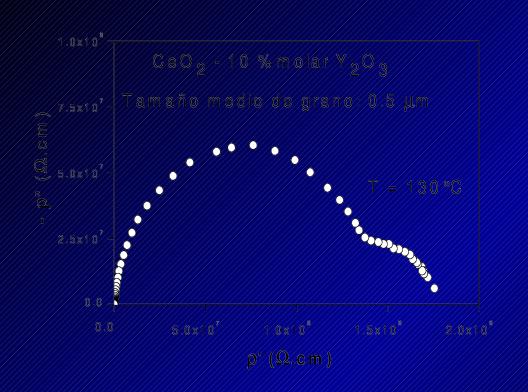
Problemas tecnológicos a resolver

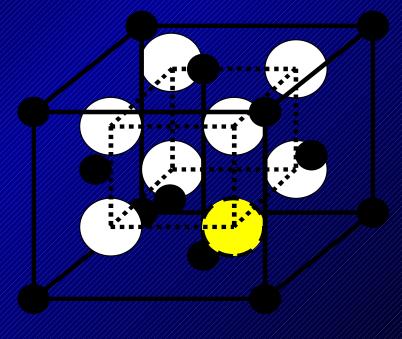
- Reducción de la temperatura de operación Esto permitiría evitar problemas de degradación por difusión en las interfases o por ciclado térmico, a la vez que se pueden usar materiales de interconexión de bajo costo. Se requieren nuevos materiales para electrolito, cátodo y ánodo para SOFCs de temperatura intermedia (IT-SOFCs).
- Aumento de la eficiencia de las celdas
- Simplificación de los diseños
- Obtención de ánodos adecuados para gas natural
- Reducción de los costos de los materiales empleados

Materiales de interés actual para operación a temperaturas intermedias

Electrolitos:

- ZrO₂ dopada con Sc₂O₃
- CeO₂ dopada con Sm₂O₃, Gd₂O₃ o Y₂O₃
- Perovskitas de (La;Sr)(Ga,Mg)O₃

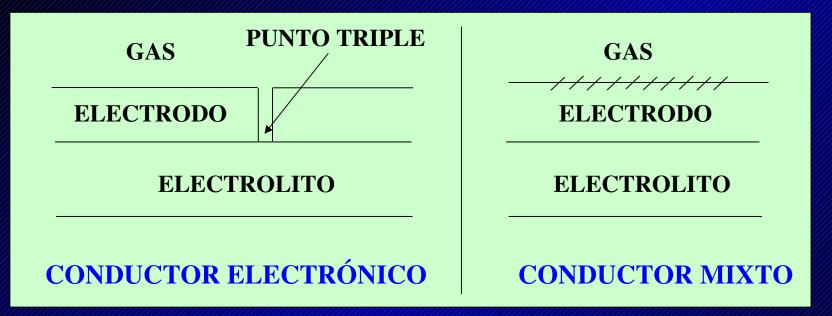

Cátodos:


Generalmente se usan cobaltitas o cobaltoferritas, como (La;Sr)CoO₃, (Sm;Sr)CoO₃ y (La;Sr)(Fe;Co)O₃, que son conductores mixtos: materiales que conducen tanto por iones O²⁻ como por electrones.

<u>Ánodos:</u>

Éste es el tema de mayor investigación. Se prueban materiales de base CeO₂.

Electrolitos sólidos cerámicos por ión O²-


Espectro de impedancia de un electrolito cerámico convencional de CeO₂ dopada con Y₂O₃

Cationes

Electrodos basados en conductores mixtos

Los conductores mixtos son materiales que conducen simultáneamente por iones O²⁻ y e⁻. Con estos materiales hay más puntos de reacción, ya que se da en toda la superficie del electrodo. En cambio, en los conductores electrónicos convencionales, la reacción se da sólo en los puntos triples electrolito/electrodo/gas.

Cátodos: (Ba;Sr)(Co;Fe)O₃ y (Pr;Sr)(Co;Fe)O₃

Ánodos: materiales basados en CeO₂, como ZrO₂-CeO₂

Ánodos de alta temperatura: reformado interno

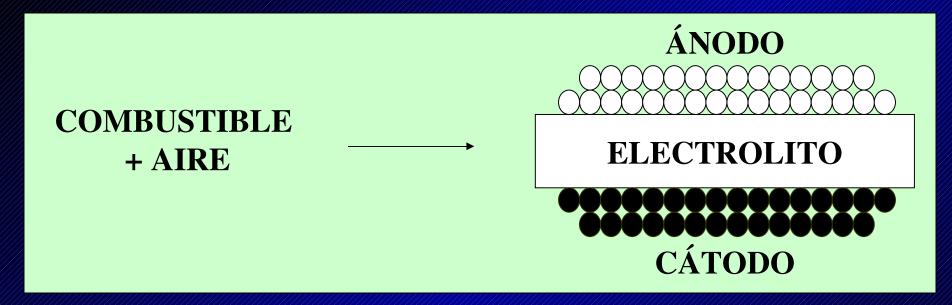
En las SOFCs convencionales se emplean ánodos basados en níquel que, en presencia de H₂O o CO₂ y a alta temperatura, catalizan el reformado de CH₄ a H₂ y CO:

$$CH_4 + H_2O$$
 $3H_2 + CO$
 $CH_4 + CO_2$ $2H_2 + 2CO$

Posteriormente, estos gases reaccionan con los iones O²-:

$$H_2 + O^{2-}$$
 $H_2O + 2e^{-}$
 $CO + O^{2-}$ $CO_2 + 2e^{-}$

Anodos para temperaturas intermedias


• Oxidación directa del combustible

$$CH_4 + 4O^{2-} \longrightarrow 2H_2O + CO_2 + 8e^- \text{ (para el CH}_4\text{)}$$

Oxidación parcial del combustible: celdas de una cámara

$$CH_4 + \frac{1}{2}O_2 \longrightarrow 2H_2 + CO \text{ (para el CH}_4)$$

Celdas de óxido sólido de una cámara

Estas celdas operan en una mezcla de aire y combustible (hidrocarburos), en proporciones que no sean peligrosas. El aire se aprovecha para la oxidación parcial del hidrocarburo en el ánodo. Los materiales de electrodo deben ser selectivos a las respectivas reacciones. Este nuevo diseño es más sencillo y permite reducir el peso y el costo de las celdas.

<u>Referencias</u>: Hibino et al., Solid State Ionics **127** (2000) 89, Science **288** (2000) 231, J. Electrochem. Soc. **149** (2002) A133; A. Tomita et al., Electrochem. Solid-State Lett. **78** (2005) A63.

Trabajos realizados en el CINSO

- Investigaciones sobre nanomateriales cerámicos para IT-SOFCs
- SOFCs de una cámara: un nuevo diseño que simplifica los dispositivos
- Investigaciones recientes sobre materiales modernos para IT-SOFCs

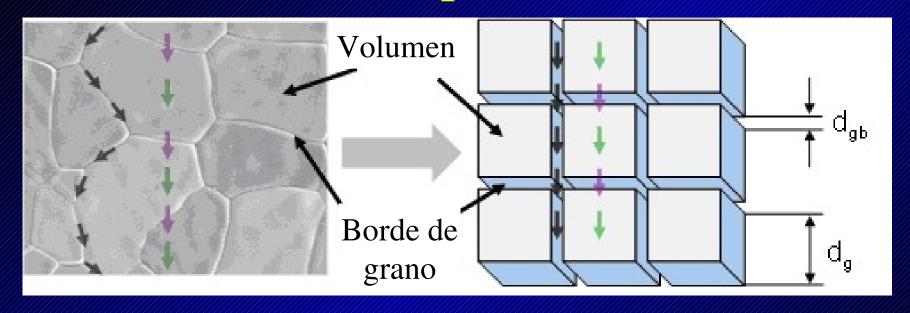
Proyecto de IT-SOFCs del CINSO

Objetivos principales:

- Obtención y caracterización de materiales adecuados para electrolito o electrodos de IT-SOFCs operadas con hidrocarburos
- Desarrollo de ánodos para gas natural o biogás
- Estudio de nuevas rutas de síntesis (sencillas y de bajo costo)
- Estudio de nuevos diseños (ej.: pilas de una cámara)
- Búsqueda de nuevos materiales o nuevas microestructuras para el electrolito o los electrodos
- Empleo de nanomateriales en IT-SOFCs

¿Podemos utilizar nanomateriales en pilas de combustible de óxido sólido?

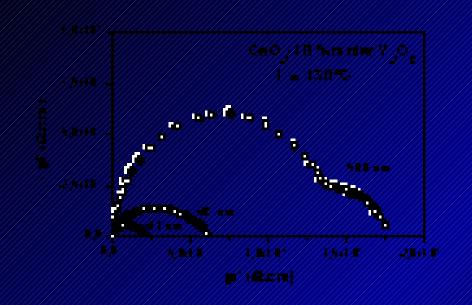
Problema: Las temperaturas típicas de operación y de preparación de las SOFCs son muy altas!!

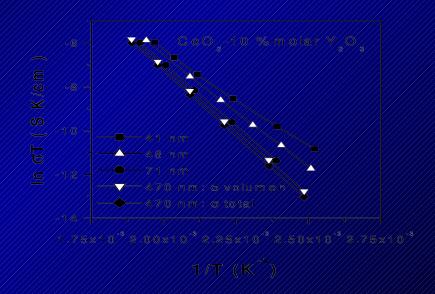

En principio, es posible emplearlos en IT-SOFCs, si la temperatura de preparación de todos los componentes de la celda es relativamente baja.

¿ Vale la pena intentarlo? ¿Qué ventajas podemos encontrar si usamos nanomateriales?

Líneas de investigación del CINSO en nanomateriales para IT-SOFCs

- Electrolitos sólidos nanoestructurados: aumento de la conductividad iónica del electrolito
- Electrodos de conductores mixtos nanoestructurados con alta área específica: mayor eficiencia en las reacciones de electrodo (aplicable a cátodos y ánodos)
- Fases metaestables retenidas en nanomateriales:
- Ánodos de ZrO₂-CeO₂ de fase tetragonal, de excelentes propiedades catalíticas para la oxidación de metano
- Electrolitos basados en cerámicos nanoestructurados de ZrO₂-Y₂O₃, ZrO₂-CaO o ZrO₂-Sc₂O₃ de fase tetragonal

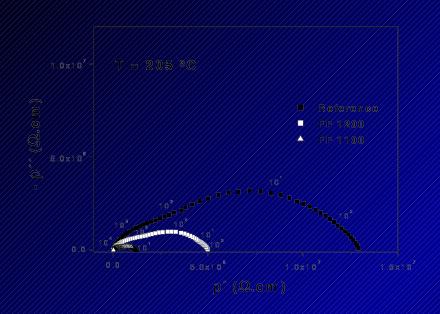

Transporte iónico en policristales: Modelo de "capas de ladrillos"

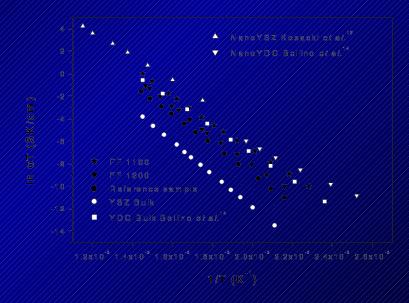


En materiales microestructurados se desprecia la conductividad paralela por borde de grano por la baja concentración de iones O²-con este mecanismo de transporte y su baja conductividad.

Estos iones pueden tener un peso importante en nanomateriales, ya que aumenta su difusividad y la fracción en volumen del borde de grano "eléctrico". Existen muy pocos antecedentes en la literatura que confirman experimentalmente este efecto.

Aumento de la conductividad iónica total en electrolitos nanoestructurados basados en CeO,


Espectros de impedancia para distintos tamaños de grano


Gráficos de Arrhenius para distintos tamaños de grano

Aumenta la conductividad iónica total, debido a la muy alta difusividad de los iones O²⁻ en borde de grano.

M.G. Bellino, D.G. Lamas y N.E. Walsöe de Reca, *Adv. Funct. Mater.* **16** (2006) 107-113 y *Adv. Mater.* **18** (2006) 3005-3009

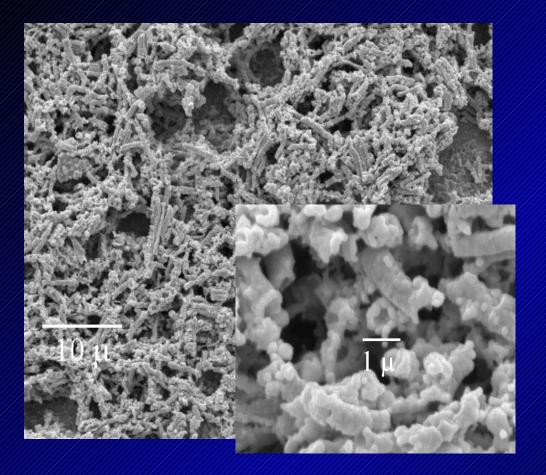
Aumento de la conductividad iónica total en nanocomposites de ZrO₂-Y₂O₃/CeO₂-Y₂O₃

Espectros de impedancia para distintos tratamientos

Gráficos de Arrhenius de composites y fases puras

Aumenta la conductividad iónica total, debido a la mayor difusividad de los iones O²⁻ por borde de grano y a la conexión paralela casi ideal entre ambas fases.

M.G. Bellino, D.G. Lamas y N.E. Walsöe de Reca, *J. Mater. Chem.*, en prensa (2008)


Electrodos basados en conductores mixtos nanoestructurados de alta área específica

En el caso de electrodos de conductores mixtos, la reacción con el gas se produce en toda la interfaz electrodo/gas. Para electrodos nanoestructurados de alta área específica, la superficie de reacción aumenta significativamente.

Ej.: cátodos basados en cobaltitas, ánodos de ZrO₂-CeO₂, etc.

Nanotubos de cobaltitas para cátodo de SOFCs

Tienen una excelente performance por su alta área específica, lo que aumenta el número de puntos de reacción para la reducción del O₂.

ASR $(700^{\circ}C) = 0.21 \Omega.cm^{2}$

M.G. Bellino, J.G. Sacanell, D.G. Lamas, A.G. Leyva y N.E. Walsöe de Reca, *J. Am. Chem. Soc.* **129** (2007) 3066-3067

Actualmente se estudian nanotubos de base CeO, para ánodo.

Retención de fases metaestables en nanocerámicos basados en ZrO₂

MONOCLÍNICA Fases del ZrO, - TETRAGONAL Fases importantes por sus (circonia) propiedades eléctricas y mecánicas - CÚBICA 1170°C 2370°C MONOCLÍNICA TETRAGONAL CÚBICA 1000°C

Las fases de alta temperatura tetragonal y cúbica pueden retenerse a temperaturas más bajas dopando a la ZrO₂ con otros óxidos de metales divalentes o trivalentes (MO o M₂O₃).

Sistema ZrO₂-Y₂O₃

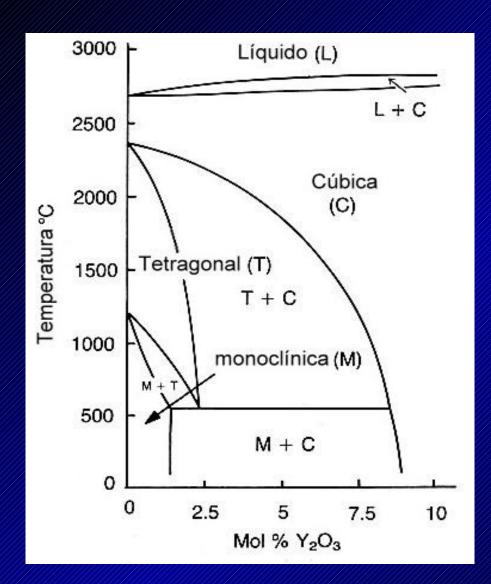
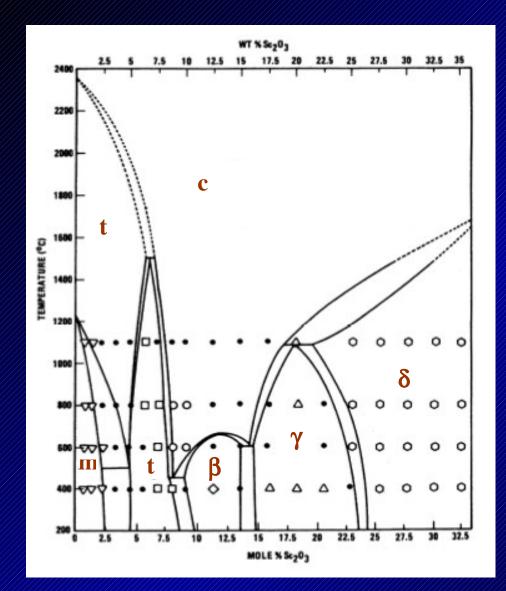
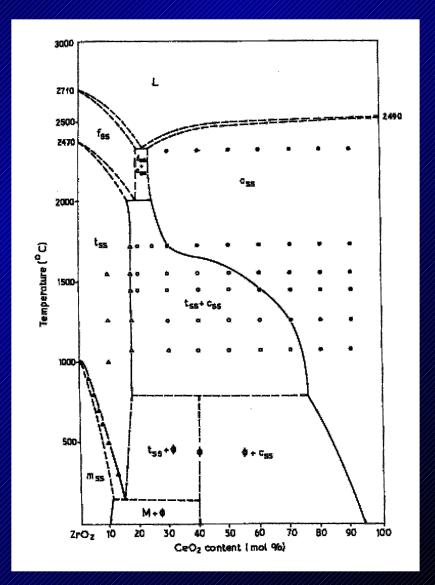




Diagrama de fases

- La fase cúbica es estable a temperatura ambiente para altas concentraciones de dopante.
- La fase tetragonal no es estable a temperatura ambiente (la fase estable es la monoclínica), pero se la puede retener en forma metaestable en nanomateriales.
- En soluciones sólidas homogéneas en composición se retienen formas metastables de la fase tetragonal: t' y t".

Otros sistemas basados en ZrO₂

Sistema ZrO₂-Sc₂O₃

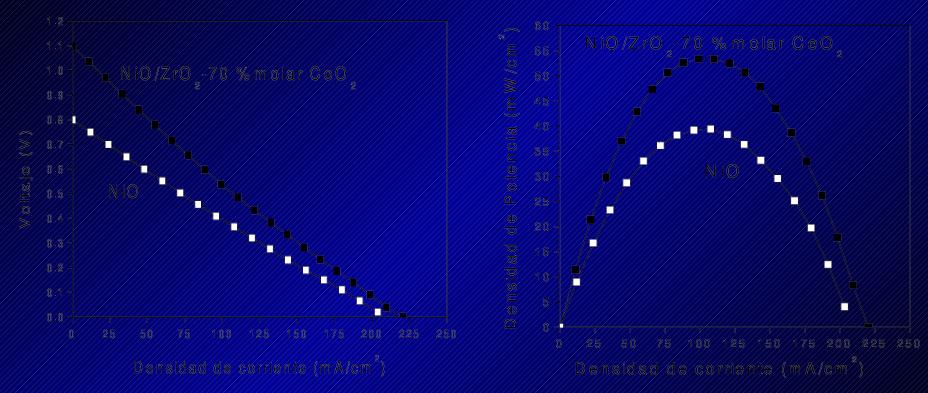
Sistema ZrO₂-CeO₂

Fases metaestables de ZrO₂ dopada: materiales para electrolito

- ✓ Los cerámicos de ZrO₂-Y₂O₃, ZrO₂-CaO y ZrO₂-Sc₂O₃ que presentan las fases tetragonal y/o cúbica son empleados como electrolitos de SOFCs ya que presentan una alta conductividad iónica por ión O²- (mecanismo de conducción por vacancias de oxígeno, que se introducen por la menor valencia del catión dopante en comparación con el Zr⁴+).
- Se debe evitar las fases estables monoclínica y romboédrica, de malas propiedades eléctricas.
- La presencia de fase tetragonal mejora las propiedades mecánicas: alta tenacidad a la fractura debido al mecanismo de "tenacidad por transformación".

Fases metaestables de ZrO₂-CeO₂: materiales para ánodo

- ✓ Las soluciones sólidas de ZrO₂-CeO₂ que presentan formas metaestables de la fase tetragonal tienen excelentes propiedades catalíticas para la oxidación de metano (CH₄).
 - S.A. Larrondo et al., Catal. Today 107-108 (2005) 53-59
- Estos materiales son conductores mixtos en atmósfera reductora, debido a la reducción de Ce⁴⁺ a Ce³⁺.
- Se tiene dificultades para aplicarlo debido a que estas soluciones sólidas se degradan a alta temperatura y por el cambio de volumen al reducirse el cerio.
- ✓ El CINSO está estudiando la performance de ánodos basados en cermets con ZrO₂-CeO₂ como cerámico.
 - D.G. Lamas et al., ECS Transactions 7 (2007) 961-970

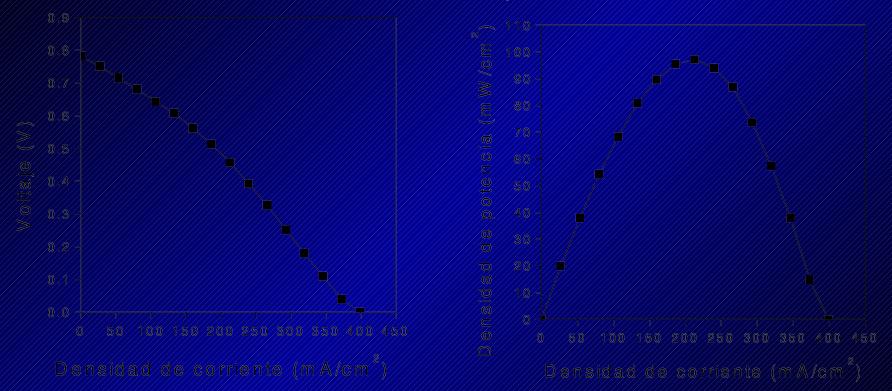

Celdas de combustible de óxido sólido de una cámara

Es importante confirmar la viabilidad de estos dispositivos propuestos recientemente.

La oxidación parcial del combustible en el ánodo (en lugar del reformado interno convencional) permite pensar en nuevos materiales eficientes a temperaturas intermedias.

Celdas de una cámara de alta

Electrolito: ZrO_2 -8 % molar Y_2Q_F (YSZ); cátodo: $La_{0.8}Sr_{0.2}MnO_3$; ánodos: NiO y NiO/ ZrO_2 -70 % molar CeO_2



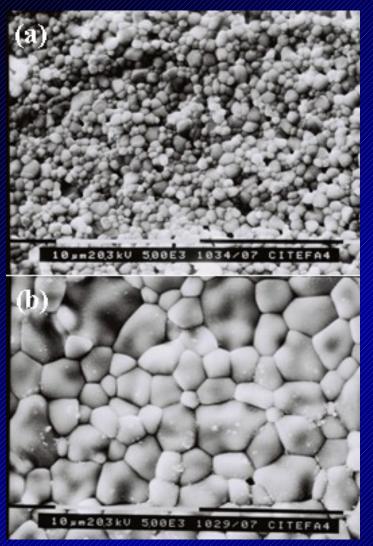
Voltaje vs. densidad de corriente y densidad de potencia vs. densidad de corriente para celdas operadas a 950°C en mezclas de CH₄ y aire con una relación CH₄:O₅ de 1:1.

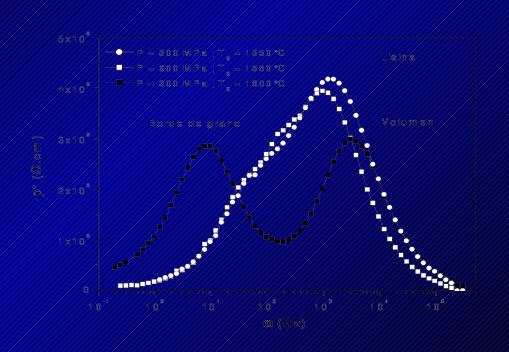
D.G. Lamas et al., ECS Transactions 7 (2007) 961-970

Celdas de una cámara de temperatura intermedia

Electrolito: CeO_2 -10 % molar Sm_2O_3 ; cátodo: $Sm_{0.5}Sr_{0.5}CoO_3$; ánodo: NiO/CeO_2 -10 % molar Sm_2O_3/PdO .

Voltaje vs. densidad de corriente y densidad de potencia vs. densidad de corriente para celdas operadas a 600°C en mezclas de CH₄ y aire con una relación CH₄:O₂ de 2:1.

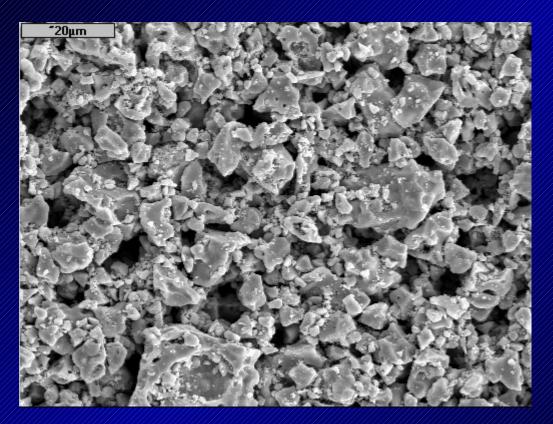

M.D. Cabezas et al., ECS Transactions 7 (2007) 955-960


Resultados recientes sobre materiales modernos para IT-SOFCs

Algunas investigaciones recientes realizadas en el CINSO:

- Electrolitos de ZrO₂-Sc₂O₃
- Cátodos de Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃
- Cátodos de composites cobaltitas/CeO₂-Gd₂O₃

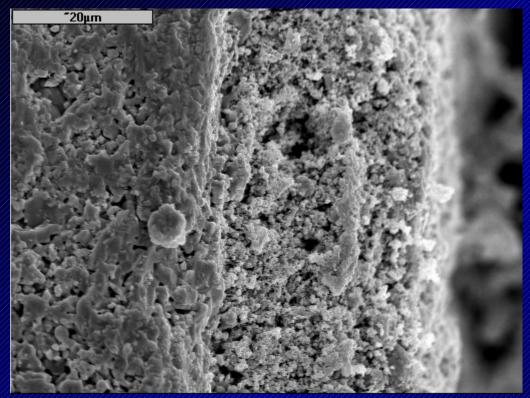
Aumento de la conductividad iónica total en electrolitos de grano fino de ZrO₂-Sc₂O₃



Se observa un aumento de la conductividad iónica de aprox. 50% en los cerámicos de grano fino (~ 0.5 µm)

P.M. Abdala et al., ECS Transactions 7 (2007) 2197-2205

Cátodos de Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃



Superficie de un cátodo de Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃ (síntesis por liofilización) sobre electrolito de CeO₂-Gd₂O₃

Se logró una excelente performance: ASR $(700^{\circ}\text{C}) = 26 \text{ m}\Omega.\text{cm}^2$

Tesis de Leandro Acuña (trabajo en desarrollo)

Cátodos de composites cobaltitas/CeO₂-Gd₂O₃

Electrolito Cátodo: composite de Sm_{0.5}Sr_{0.5}CoO₃/CeO₂-Gd₂O₃

Composite de $Sm_{0.5}Sr_{0.5}CoO_3$ (síntesis por liofilización) y CeO_2 - Gd_2O_3 (polvo fino comercial) sobre electrolito de CeO_2 - Gd_2O_3

 $Sm_{0.5}Sr_{0.5}CoO_3/CeO_2-Gd_2O_3$: ASR (700°C) = 49 m Ω .cm² $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{O.2}O_3/CeO_2-Gd_2O_3$: ASR (700°C) = 15 m Ω .cm²

Tesis de Leandro Acuña (trabajo en desarrollo)

Conclusiones

- La principal dificultad de las SOFCs convencionales es su alta temperatura de operación. Por ello, se estudian materiales para electrolito y electrodo de temperatura intermedia.
- Para el caso del ánodo, cuando se utilizan hidrocarburos como combustibles, es necesario introducir nuevos conceptos que reemplacen al reformado interno:
 - oxidación directa de hidrocarburos
 - oxidación parcial de hidrocarburos: celdas de una cámara
- En el caso de SOFCs de temperatura intermedia, es posible emplear materiales nanoestructurados para electrolito y electrodo, los cuales pueden presentar mejores propiedades que los materiales convencionales. En materiales nanoestructurados basados en ZrO₂, se retienen fases metaestables de excelentes propiedades.

Agradecimientos

- Agencia Nacional de Promoción Científica y Tecnológica (PICT 14268, PICT 38309 y PAE 36985)
- CONICET (PIP 6559)
- Fundación YPF
- Fundación Antorchas
- Laboratorio Nacional de Luz Sincrotrón (Brasil)
- Cooperaciones Argentina-Brasil SECyT-CAPES y CONICET-CNPq
- Agencia Española de Cooperación Internacional

Invitación:

Workshop Nacional sobre Celdas de Combustible de Óxido Sólido

CITEFA, 2 y 3 de Octubre de 2008