Preferential adsorption in ethane/CO₂ fluid mixtures confined within silica nanopores M. Dolores Elola & Javier Rodriguez

Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CAC-CNEA), Bs As

1. Introduction & Methodology

Structural and dynamical properties of fluid ethane confined within silica nanopores have been investigated by Molecular Dynamics simulations. The pure ethane phase and equimolar mixtures of ethane and CO₂ were considered; at densities in the range $\rho/\rho_{crit} = 0.05 - 2.18$.

3. Structural Properties: Orientations

Orientation wrt the silica wall

• Interfacial Ethane \rightarrow parallel to surface.

• Interfacial $CO_2 \rightarrow$ bimodal distribution, parallel and perpendicular to surface. Due to directional hydrogen-bond like interactions $[O=C=O\cdots H-O-Si]$ with the silica walls

• Bulk region \rightarrow no preferential orientations.

• Molecular Dynamics simulations, times \sim 60 ns). • Microcanonical Ensemble *NVE*, at $T \sim 320$ K. Inter-molecular interactions: Coulomb & Lennard-Jones; Intra-molecular interactions: stretching, bending & torsion.

2. Structural Properties: Local Densities

Densities along *z*:

Densities along *r*:

Probability distribution Figure 4: Top: $P(\cos \theta)$ for ethane and CO_2 confined the intermolecular cosine angle vs. center- configurations; of-mass separation. Curves correspond to equimolar mixture with $\rho_b/\rho_c = 0.46$.

Orientational function $G_2(r) = \langle P_2(\hat{u}_i \cdot \hat{u}_j) \, \delta(r_{ij} - r) \rangle,$ where $P_2(x) = (3x^2 - 1)/2$ is the 2nd-rank Legendre polynomial. T-shaped parallel

species; bottom: Legendre polynomials of $\bullet G_2 < 0$ at small $r \rightarrow$ T-shaped • $G_2 \sim 0.2$ at $r \sim 3 - 4$ Å \rightarrow intermediate between T-shaped and par-

allel arrangements.

4. Dynamical Properties

Diffusion: Self-diffusion coefficients were computed from the classical Einstein relation for the mean squared displacements.

Figure 2: Normalized local densities of ethane and CO₂ species along the radial direction, for ethane/CO₂ equimolar mixtures.

Excess sorption densities:

Table 1: Diffusion coefficients (in 10^{-4} cm²s⁻¹).

	pure	mixture 50% CO ₂				
P (bar)	D ^{blk} eth	D _{eth}	D ^{blk} eth	D _{eth}	$D_{\rm CO_2}^{\rm blk}$	$D_{\rm CO_2}^{\rm conf}$
20	20.8	2.71	24.2	2.88	24.6	2.06
40	7.44	2.25	8.85	2.64	8.88	1.83
57	6.99	1.85	8.86	2.38	8.96	1.59
70	4.91	1.88	7.67	2.02	7.74	1.43
100	3.15	1.43	3.79	1.80	3.84	1.22
400	1.60	1.15	1.51	1.98	1.55	0.84

Local diffusion along r

• Diffusion is *reduced* under confinement and increasing Pressure. Incorporation of CO₂ into the fluid enhances the diffusion of ethane species.

 Coexistence of fast and slow translational modes within the cavity. Orientational correlations of interfacial molecules decay more slowly than bulk-like ones; CO₂ correlations

Figure 1: Normalized local densities along the axial z-axis for ethane/CO₂ equimolar mixtures.

Excess density:

 $\rho(z) / \rho_b$

Difference between the average density inside the pore and the bulk density,

 $\Delta \rho_{\rm exc} = \langle \rho_{\rm pore} \rangle - \rho_{\rm b}$

Density profiles reveal the formation of a dense adsorption layer, rich in CO₂.

Figure 3: Excess densities of confined ethane and CO₂ in the pure fluids. Experimental data measured on 11.1 nm CPG-75 silica glass pores.

being the slowest.

Figure 5: Local diffusion coefficients of confined ethane species. Filled and empty symbols correspond to pure ethane and equimolar mixture, respectively.

5. Conclusions

Preferential adsorption of CO₂ over ethane within the adsorbed layer inside the pores led to significant increments in ethane mobility, due to displacements of interfacial ethane molecules towards more internal, bulk-like, locations. These effects were found to be more pronounced at low densities and under strong confinement.

3rd Workshop on Structure and Dynamics of Glassy, Supercooled and Nanoconfined Fluids, BsAs, 14-16 July 2019

doloreselola@gmail.com